Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 3(3): 361-370, 2023 03.
Article in English | MEDLINE | ID: mdl-36875157

ABSTRACT

Lynch syndrome (LS) is the most common hereditary cancer syndrome. Early diagnosis improves prognosis and reduces health care costs, through existing cancer surveillance methods. The problem is finding and diagnosing the cancer predisposing genetic condition. The current workup involves a complex array of tests that combines family cancer history and clinical phenotypes with tumor characteristics and sequencing data, followed by a challenging task to interpret the found variant(s). On the basis of the knowledge that an inherited mismatch repair (MMR) deficiency is a hallmark of LS, we have developed and validated a functional MMR test, DiagMMR, that detects inherited MMR deficiency directly from healthy tissue without need of tumor and variant information. The validation included 119 skin biopsies collected from clinically pathogenic MMR variant carriers (MSH2, MSH6) and controls, and was followed by a small clinical pilot study. The repair reaction was performed on proteins extracted from primary fibroblasts and the interpretation was based on the MMR capability of the sample in relation to cutoff, which distinguishes MMR proficient (non-LS) from MMR deficient (LS) function. The results were compared with the reference standard (germline NGS). The test was shown to have exceptional specificity (100%) with high sensitivity (89%) and accuracy (97%). The ability to efficiently distinguish LS carriers from controls was further shown with a high area under the receiving operating characteristic (AUROC) value (0.97). This test offers an excellent tool for detecting inherited MMR deficiency linked to MSH2 or MSH6 and can be used alone or with conventional tests to recognize genetically predisposed individuals. Significance: Clinical validation of DiagMMR shows high accuracy in distinguishing individuals with hereditary MSH2 or MSH6 MMR deficiency (i.e., LS). The method presented overcomes challenges faced by the complexity of current methods and can be used alone or with conventional tests to improve the ability to recognize genetically predisposed individuals.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , MutS Homolog 2 Protein/genetics , Pilot Projects , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease
2.
Hum Mutat ; 40(7): 904-907, 2019 07.
Article in English | MEDLINE | ID: mdl-30946512

ABSTRACT

PMS2 is one of the four susceptibility genes in Lynch syndrome (LS), the most common cancer syndrome in the world. Inherited mutations in DNA mismatch repair (MMR) genes, MLH1, MSH2, and MSH6, account for approximately 90% of LS, while a relatively small number of LS families segregate a PMS2 mutation. This and the low cancer penetrance in PMS2 families suggest that PMS2 is only a moderate or low-risk susceptibility gene. We have previously shown that even a partial expression decrease in MLH1, MSH2, or MSH6 suggests that heterozygous LS mutation carriers have MMR malfunction in constitutive tissues. Whether and how PMS2 expression decrease affects the repair capability is not known. Here, we show that PMS2 knockdown cells retaining 19%, 33%, or 53% of PMS2 expression all have significantly reduced MMR efficiency. Surprisingly, the cells retaining expression levels comparable to PMS2 mutation carriers indicate the lowest repair efficiency.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Down-Regulation , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , DNA Mismatch Repair , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genetic Predisposition to Disease , HCT116 Cells , Humans , Mutation
3.
Duodecim ; 133(3): 259-5, 2017.
Article in English | MEDLINE | ID: mdl-29205024

ABSTRACT

DNA repair mechanisms maintain genome stability by preventing the multiplication of genetic errors, caused by environmental factors and intracellular processes, during cell division. Unrepaired damage may permanently alter genome and cell functions, and even minor changes in DNA strand may initiate malignant transformation of the cell. Up to 25 000 changes in DNA are occur daily in a single, actively dividing, cell, and these changes are continuously repaired. If DNA repair mechanisms are impaired, errors will accumulate into the genome. As numerous factors of different nature can cause genetic errors, and thus several different DNA repair mechanisms are necessary to ensure genomic stability.


Subject(s)
DNA Damage , DNA Repair , Genomic Instability , Cell Transformation, Neoplastic , Humans , Risk Factors
4.
Hum Mutat ; 35(9): 1123-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24924810

ABSTRACT

Lynch syndrome (LS), the most common familial colon cancer, is associated with mismatch repair (MMR) malfunction. As mutation carriers inherit one normal and one defected MMR gene allele, cancer risk can be considered as limited amount of normal MMR gene product. How reductions in different MMR gene expressions affect MMR capability is, however, not known. The in vitro MMR assay is a method for the pathogenicity assessment of MMR gene variants causing functional or expressional defects and thus also suitable to evaluate the effects of reduced expression of normal mRNA. Here, the assay was applied to quantify repair efficiencies of human cells retaining varying expression levels (25%/50%/75%) of the main LS susceptibility genes MLH1, MSH2, or MSH6. Compared with the shRNA knockdown control, already a 50% reduction in mRNA levels could be detected as decreased MMR function although without statistical significance in MLH1. In MSH2 and MLH1, total loss of MMR was achieved with 25% expression, whereas in MSH6 and MSH2, the repair capability decreased significantly already with 75% expression. Our results provide a preliminary indication of relative expressions required for wild-type function and suggest that the in vitro MMR assay could be used to recognize expression levels indicative of LS.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation , MutS Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Cell Line , Down-Regulation , Gene Knockdown Techniques , Humans , MutL Protein Homolog 1 , RNA Interference
5.
Eur J Hum Genet ; 21(1): 55-61, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22692065

ABSTRACT

Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.


Subject(s)
Agenesis of Corpus Callosum/genetics , DNA Repair-Deficiency Disorders/genetics , Glioblastoma/complications , Malformations of Cortical Development, Group II/pathology , Parotid Neoplasms/complications , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Agenesis of Corpus Callosum/pathology , Child , Child, Preschool , Contractile Proteins/genetics , DNA Repair Enzymes/genetics , DNA Repair-Deficiency Disorders/etiology , DNA-Binding Proteins/genetics , Female , Filamins , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Male , Malformations of Cortical Development, Group II/genetics , Microfilament Proteins/genetics , Microsatellite Instability , Mismatch Repair Endonuclease PMS2 , MutL Protein Homolog 1 , Mutation , Nuclear Proteins/genetics , Parotid Neoplasms/diagnosis , Parotid Neoplasms/genetics , Parotid Neoplasms/therapy , Pregnancy , Syndrome
6.
Hum Mutat ; 33(8): 1294-301, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22581703

ABSTRACT

Mismatch repair (MMR) malfunction causes the accumulation of mismatches in the genome leading to genomic instability and cancer. The inactivation of an MMR gene (MSH2, MSH6, MLH1, or PMS2) with an inherited mutation causes Lynch syndrome (LS), a dominant susceptibility to cancer. MMR gene variants of uncertain significance (VUS) may be pathogenic mutations, which cause LS, may result in moderately increased cancer risks, or may be harmless polymorphisms. Our study suggests that an inherited MMR VUS individually assessed as proficient may, however, in a pair with another MMR VUS found in the same colorectal cancer (CRC) patient have a concomitant contribution to the MMR deficiency. Here, eight pairs of MMR gene variants found in cancer patients were functionally analyzed in an in vitro MMR assay. Although the other pairs do not suggest a compound deficiency, the MSH2 VUS pair c.380A>G/c.982G>C (p.Asn127Ser/p.Ala328Pro), which nearly halves the repair capability of the wild-type MSH2 protein, is presumed to increase the cancer risk considerably. Moreover, two MSH6 variants, c.1304T>C (p.Leu435Pro) and c.1754T>C (p.Leu585Pro), were shown to be MMR deficient. The role of one of the most frequently reported MMR gene VUS, MSH2 c.380A>G (p.Asn127Ser), is especially interesting because its concomitant defect with another variant could finally explain its recurrent occurrence in CRC patients.


Subject(s)
DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , MutS Homolog 2 Protein/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , HeLa Cells , Humans , Mutagenesis, Site-Directed , Protein Multimerization/genetics , Protein Multimerization/physiology
7.
Fam Cancer ; 10(3): 515-20, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21431882

ABSTRACT

Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS family carrying VUS in both MSH2 (c.2768T>A, p.Val923Glu) and MSH6 (c.3563G>A, p.Ser1188Asn). Two colorectal cancer (CRC) patients were studied for mutations and identified as carriers of both variants. In spite of a relatively high mean age of cancer onset (59.5 years) in the family, many CRC patients and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence that instead of MSH2 p.Val923Glu the MSH6 p.Ser1188Asn variant is completely MMR-deficient, the present study confirms the previous findings, and suggests that MSH6 (c.3563G>A, p.Ser1188Asn) is the pathogenic mutation in the family. Moreover, our results strongly support the strategy to functionally assess all identified VUS before predictive gene testing and genetic counseling are offered to a family.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA-Binding Proteins/genetics , MutS Homolog 2 Protein/genetics , Mutation/genetics , Adult , Aged , DNA Mismatch Repair/genetics , Female , Humans , Immunoenzyme Techniques , Male , Microsatellite Instability , Middle Aged , Pedigree , Prognosis
8.
Hum Mutat ; 32(1): 107-15, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21120944

ABSTRACT

In order to assess whether variations affecting DNA mismatch repair (MMR) genes are pathogenic and hence predisposing to Lynch syndrome (LS), a three-step assessment model has been proposed. Where LS is suspected based on family history, STEP1 is dedicated to the identification of the causative MMR gene and the variation within it. Thereafter, in STEP2 of the assessment model, the effect of the variation on the function of the protein is assessed in an in vitro MMR and in silico assays. Where LS cannot be confirmed or ruled out in STEP2, the more specific biochemical laboratory assays such as analyzing the effect of the variation on expression, localization, and interaction of the protein are required in STEP3. Here, we verified the proposed three-step assessment model and its ability to distinguish pathogenic MMR variations from variants of uncertain significance (VUS) by utilizing the clinical as well as the laboratory and in silico data of 37 MLH1, 26 MSH2, and 11 MSH6 variations. The proposed model was shown to be appropriate and proceed logically in assessing the pathogenicity of MMR variations. In fact, for MMR deficient MSH2 and MLH1 variations the first two steps seem to be sufficient as STEP3 provides no imperative information concerning the variant pathogenicity. However, the importance of STEP3 is seen in the assessment of MMR proficient variations showing discrepant in silico results as their pathogenicity cannot be confirmed or ruled out after STEP2. MSH6 variations may be applicable to the model if appropriate selection in terms of ruling out MLH1 and MSH2 variations and MLH1 promoter hypermethylation is ensured prior to the completion of STEP2. In conclusion, taking into consideration the susceptibility gene the three-step model can be utilized in an appropriate and efficient manner to determine the pathogenicity of MMR gene variations.


Subject(s)
DNA Mismatch Repair/genetics , Genetic Variation , Models, Genetic , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...