Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 72(8): 1518-1540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38794866

ABSTRACT

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.


Subject(s)
Myelin Sheath , Oligodendroglia , p21-Activated Kinases , p21-Activated Kinases/metabolism , Oligodendroglia/metabolism , Animals , Myelin Sheath/metabolism , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Rats , Actins/metabolism , Cells, Cultured , Mice , Mice, Inbred C57BL , Actin Cytoskeleton/metabolism
2.
Sci Rep ; 12(1): 6574, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449222

ABSTRACT

Acute spinal cord injury (SCI) leads to severe damage to the microvascular network. The process of spontaneous repair is accompanied by formation of new blood vessels; their functionality, however, presumably very important for functional recovery, has never been clearly established, as most studies so far used fixed tissues. Here, combining ultrafast Doppler imaging and ultrasound localization microscopy (ULM) on the same animals, we proceeded at a detailed analysis of structural and functional vascular alterations associated with the establishment of chronic SCI, both at macroscopic and microscopic scales. Using a standardized animal model of SCI, our results demonstrate striking hemodynamic alterations in several subparts of the spinal cord: a reduced blood velocity in the lesion site, and an asymmetrical hypoperfusion caudal but not rostral to the lesion. In addition, the worsening of many evaluated parameters at later time points suggests that the neoformed vascular network is not yet fully operational, and reveals ULM as an efficient in vivo readout for spinal cord vascular alterations. Finally, we show statistical correlations between the diverse biomarkers of vascular dysfunction and SCI severity. The imaging modality developed here will allow evaluating recovery of vascular function over time in pre-clinical models of SCI. Also, used on SCI patients in combination with other quantitative markers of neural tissue damage, it may help classifying lesion severity and predict possible treatment outcomes in patients.


Subject(s)
Microscopy , Spinal Cord Injuries , Animals , Disease Models, Animal , Humans , Recovery of Function , Spinal Cord/pathology
3.
Glia ; 69(8): 1916-1931, 2021 08.
Article in English | MEDLINE | ID: mdl-33811384

ABSTRACT

Common in vitro models used to study the mechanisms regulating myelination rely on co-cultures of oligodendrocyte precursor cells (OPCs) and neurons. In such models, myelination occurs in an environment that does not fully reflect cell-cell interactions and environmental cues present in vivo. To avoid these limitations while specifically manipulating oligodendroglial cells, we developed a reliable ex vivo model of myelination by seeding OPCs on cerebellar slices, deprived of their endogenous oligodendrocytes. We showed that exogenous OPCs seeded on unmyelinated cerebella, efficiently differentiate and form compact myelin. Spectral confocal reflectance microscopy and electron microscopy analysis revealed that the density of compacted myelin sheaths highly increases all along the culture. Importantly, we defined the appropriate culture time frame to study OPC differentiation and myelination, using accurate quantification resources we generated. Thus, this model is a powerful tool to study the cellular and molecular mechanisms of OPC differentiation and myelination. Moreover, it is suitable for the development and validation of new therapies for myelin-related disorders such as multiple sclerosis and psychiatric diseases.


Subject(s)
Oligodendrocyte Precursor Cells , Oligodendroglia , Cell Differentiation/physiology , Coculture Techniques , Myelin Sheath/physiology , Oligodendroglia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...