Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(37): 8251-63, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-24689826

ABSTRACT

Here we report a detailed study aimed at elucidating the mechanism of intracluster ionic polymerization following the electron impact ionization of van der Waals clusters of ethynylbenzene (C8H6)n generated by a supersonic beam expansion. The structures of the C16H12, C24H18, C32H24, C40H30, and C48H36 radical cations resulting from the intracluster ion-molecule addition reactions have been investigated using a combination of mass-selected ion dissociation and ion mobility measurements coupled with theoretical calculations. Noncovalent structures can be totally excluded primarily because the measured fragmentations cannot result from noncovalent structures, and partially because of the large difference between the measured collision cross sections and the calculated values corresponding to noncovalent ion-neutral complexes. All the mass-selected cluster ions show characteristic fragmentations of covalently bonded molecular ions by the loss of stable neutral fragments such as CH3, C2H, C6H5, and C7H7. The population of the C16H12 dimer ions is dominated by structural isomers of the type (C6H5)-C≡C-CH(•+)CH-(C6H5), which can grow by the sequential addition of ethynylbenzene molecules, in addition to some contributions from cyclic isomers such as the 1,3- or 1,4-diphenyl cyclobutadiene ions. Similarly, two major covalent isomers have been identified for the C24H18 trimer ions: one that has a blocked cyclic structure assigned to 1,2,4- or 1,3,5-triphenylbenzene cation, and a second isomer of the type (C6H5)-C≡C-C(C6H5)═CH-CH(•+)CH-(C6H5) where the covalent addition of further ethynylbenzene molecules can occur. For the larger ions such as C32H24, C40H30, and C48H36, the major isomers present involve the growing oligomer sequence (C6H5)-C≡C-[C(C6H5)═CH]n-CH(•+)CH-(C6H5) with different locations and orientations of the phenyl groups along the chain. In addition, the larger ions contain another family of structures consisting of neutral ethynylbenzene molecules associated with the blocked cyclic isomer ions such as the diphenylcyclobutadiene and triphenylbenzene cations. Low-energy dissociation channels corresponding to evaporation of ethynylbenzene molecules weakly associated with the covalent ions are observed in the large clusters in addition to the high-energy channels corresponding to fragmentation of the covalently bonded ions. However, in small clusters only high-energy dissociation channels are observed corresponding to the characteristic fragmentation of the molecular ions, thus providing structural signatures to identify the product ions and establish the mechanism of intracluster ionic polymerization.

2.
J Chem Theory Comput ; 10(12): 5729-37, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-26583254

ABSTRACT

A new flexible implementation of a genetic algorithm for locating unique low energy minima of isomers of clusters is described and tested. The strategy employed can be applied to molecular or atomic clusters and has a flexible input structure so that a system with several different elements can be built up from a set of individual atoms or from fragments made up of groups of atoms. This cluster program is tested on several systems, and the results are compared to computational and experimental data from previous studies. The quality of the algorithm for locating reliably the most competitive low energy structures of an assembly of atoms is examined for strongly bound Si-Li clusters, and ZnF2 clusters, and the more weakly interacting water trimers. The use of the nuclear repulsion energy as a duplication criterion, an increasing population size, and avoiding mutation steps without loss of efficacy are distinguishing features of the program. For the Si-Li clusters, a few new low energy minima are identified in the testing of the algorithm, and our results for the metal fluorides and water show very good agreement with the literature.

3.
Tetrahedron ; 69(29): 5829-5840, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23894213

ABSTRACT

The preparation of an indole appended vinamidinium salt, an indole appended vinylogous amide and an indole appended chloroenal are described. The subsequent regiospecific conversion of these indole containing building blocks to functionalized pyrazoles and pyrroles is detailed.

4.
Tetrahedron ; 66(47): 9113-9122, 2010 Nov 20.
Article in English | MEDLINE | ID: mdl-21135918

ABSTRACT

Studies directed at the synthesis of (Z)-5-benzylidene-4-arylpyrrol-2(5H)-ones from (Z)-3-aryl-3-haloenoic acids are described. The successful strategy relies on the preparation of (Z)-3-aryl-3-haloenoic acids from acetophenones through the corresponding (Z)-3-aryl-3-haloenals and the conversion of the (Z)-3-aryl-3-haloenoic acids to (Z)-5-benzylidene-4-aryl-5H-furan-2-ones. The furanones were subsequently treated with primary amines and dehydrated to the corresponding (Z)-5-benzylidene-4-arylpyrrol-2(5H)-ones.

5.
Tetrahedron ; 66(44): 8485-8493, 2010 Oct 30.
Article in English | MEDLINE | ID: mdl-21113324

ABSTRACT

Studies directed at the amine exchange reaction of vinamidinium salts followed by sodium borohydride reduction to secondary and tertiary allylic amines are described. The tertiary allylic amines were alkylated and subjected to base mediated rearrangement to yield a variety of highly functionalized tertiary homoallylic amines.

6.
Tetrahedron ; 65(22): 4283-4292, 2009 May 30.
Article in English | MEDLINE | ID: mdl-20161334

ABSTRACT

Studies directed at the synthesis of lamellarin G trimethyl ether and ningalin B via vinylogous iminium salt derivatives are described. The successful strategy relies on the formation of a 2,4-disubstituted pyrrole or a 1,2,3,4-tetrasubstituted pyrrole from a vinylogous iminium salt or vinylogous iminium salt derivative. Subsequent transformations of these highly substituted pyrroles lead to efficient and regiocontrolled formal syntheses of the respective pyrrole containing natural products.

7.
Tetrahedron ; 64(22): 5246-5253, 2008.
Article in English | MEDLINE | ID: mdl-18709182

ABSTRACT

Studies directed at the synthesis of polycitone and storniamide natural products via vinylogous iminium salts and microwave accelerated Vilsmeier-Haack formylations are described. The successful strategy relies on the formation of a 2,4-disubstituted pyrrole or a 2,3,4-trisubstituted pyrrole from a vinamidinium salt or vinamidinium salt derivative followed by formylation at the 5-position of the pyrrole. Subsequent transformations of the selectively formylated pyrroles lead to efficient and regiocontrolled relay syntheses of the respective pyrrole containing natural products.

SELECTION OF CITATIONS
SEARCH DETAIL
...