Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 9(1): 262-271, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38190731

ABSTRACT

Iron oxide nanoparticles (IONPs) have wide utility in applications from drug delivery to the rewarming of cryopreserved tissues. Due to the complex behavior of IONPs (e.g., uneven particle distribution and aggregation), further developments and clinical translation can be accelerated by having access to a noninvasive method for tissue IONP quantification. Currently, there is no low-cost method to nondestructively track IONPs in tissues across a wide range of concentrations. This work describes the performance of a low-cost, tabletop, longitudinally detected electron paramagnetic resonance (LOD-EPR) system to address this issue in the field of cryopreservation, which utilizes IONPs for rewarming of rat kidneys. A low-cost LOD-EPR system is realized via simultaneous transmit and receive using MHz continuous-wave transverse excitation with kHz modulation, which is longitudinally detected at the modulation frequency to provide both geometric and frequency isolation. The accuracy of LOD-EPR for IONP quantification is compared with NMR relaxometry. Solution measurements show excellent linearity (R2 > 0.99) versus Fe concentration for both measurements on EMG308 (a commercial nanoparticle), silica-coated EMG308, and PEG-coated EMG308 in water. The LOD-EPR signal intensity and NMR longitudinal relaxation rate constant (R1) of water are affected by particle coating, solution viscosity, and particle aggregation. R1 remains linear but with a reduced slope when in cryoprotective agent (CPA) solution, whereas the LOD-EPR signal is relatively insensitive to this. R1 does not correlate well with Fe concentration in rat kidney sections (R2 = 0.3487), while LOD-EPR does (R2 = 0.8276), with a linear regression closely matching that observed in solution and CPA.


Subject(s)
Magnetic Resonance Imaging , Water , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging/methods , Magnetic Iron Oxide Nanoparticles
2.
J Magn Reson ; 357: 107578, 2023 12.
Article in English | MEDLINE | ID: mdl-37952431

ABSTRACT

Cellular macroencapsulation devices, known as tissue engineered grafts (TEGs), enable the transplantation of allogeneic cells without the need for life-long systemic immunosuppression. Islet containing TEGs offer promise as a potential functional cure for type 1 diabetes. Previous research has indicated sustained functionality of implanted islets at high density in a TEG requires external supplementary oxygen delivery and an effective tool to monitor TEG oxygen levels. A proven oxygen-measurement approach employs a 19F oxygen probe molecule (a perfluorocarbon) implanted alongside therapeutic cells to enable oxygen- and temperature- dependent NMR relaxometry. Although the approach has proved effective, the clinical translation of 19F oxygen relaxometry for TEG monitoring will be limited by the current inaccessibility and high cost of MRI. Here, we report the development of an affordable, compact, and tabletop 19F NMR relaxometry system for monitoring TEG oxygenation. The system uses a 0.5 T Halbach magnet with a bore diameter (19 cm) capable of accommodating the human arm, a potential site of future TEG implantation. 19F NMR relaxometry was performed while controlling the temperature and oxygenation levels of a TEG using a custom-built perfusion setup. Despite the magnet's nonuniform field, a pulse sequence of broadband adiabatic full-passage pulses enabled accurate 19F longitudinal relaxation rate (R1) measurements in times as short as ∼2 min (R1 vs oxygen partial pressure and temperature (R2 > 0.98)). The estimated sensitivity of R1 to oxygen changes at 0.5 T was 1.62-fold larger than the sensitivity previously reported for 16.4 T. We conclude that TEG oxygenation monitoring with a compact, tabletop 19F NMR relaxometry system appears feasible.


Subject(s)
Fluorocarbons , Magnetic Resonance Imaging , Humans , Magnetic Resonance Spectroscopy , Oxygen , Temperature
3.
ACS Appl Mater Interfaces ; 14(37): 41659-41670, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36070361

ABSTRACT

Deep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.) embolic as a localized dual treatment implant for nutrient deprivation and multiple repeatable thermal ablation. Following a single injection, multiple thermal treatments can be repeated as needed, based on monitoring of tumor growth/recurrence. Herein we show the ability to create an injectable stable PHIL-IONP solution, monitor deposition of the PHIL-IONP precipitate dispersion by µCT, and gauge the IONP distribution within the embolic by magnetic resonance imaging. Once precipitated, the implant could be heated to reach therapeutic temperatures >8 °C for thermal ablation (clinical temperature of ∼45 °C), in a model disk and a 3D tumor bed model. Heat output was not affected by physiological conditions, multiple heating sessions, or heating at intervals over a 1 month duration. Further, in ex vivo mice hind-limb tumors, we could noninvasively heat the embolic to an "ablative" temperature elevation of 17 °C (clinically 54 °C) in the first 5 min and maintain the temperature rise over +8 °C (clinically a temperature of 45 °C) for longer than 15 min.


Subject(s)
Embolization, Therapeutic , Neoplasms , Animals , Dimethyl Sulfoxide , Embolization, Therapeutic/methods , Heating , Magnetic Iron Oxide Nanoparticles , Mice , Neoplasms/drug therapy , Polyvinyls/therapeutic use
4.
J Magn Reson ; 342: 107279, 2022 09.
Article in English | MEDLINE | ID: mdl-35952409

ABSTRACT

A frequency-swept longitudinal detection (LOD) EPR system is described for ultra-low field spectroscopy and relaxometry. With the capability of performing simultaneous transmit and receive with -80 dB isolation, this LOD-EPR can capture signals with decay constants in the nanosecond range and in theory even sub-nanosecond range, at fields close to the earth's magnetic field. The theoretical principles underlying this LOD-EPR are based on a fictitious field that accounts for the Z-axis magnetization polarized by a radiofrequency field alone. The electron spin relaxation time is obtained directly from a previously derived equation that describes the relationship between the relaxation time and the spectral peak position. Herein, the first frequency-swept LOD-EPR system is described in detail, along with experimental measurements of the short relaxation time (∼30 ns) of the free radical, 2,2-diphenyl-1-picrylhydrazyl, at zero to low field.


Subject(s)
Electrons , Electron Spin Resonance Spectroscopy/methods
5.
Anal Chem ; 90(7): 4792-4800, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29510027

ABSTRACT

Polydimethylsiloxane (PDMS) membranes can act as sensing elements, barriers, and substrates, yet the low rigidity of the elastomeric membranes can limit their practical use in devices. Microraft arrays rely on a freestanding PDMS membrane as a substrate for cell arrays used in imaging cytometry and cellular isolation. However, the underlying PDMS membrane deforms under the weight of the cell media, making automated analytical microscopy (and thus cytometry and cell isolation) challenging. Here we report the development of microfabrication strategies and physically motivated mathematical modeling of membrane deformation of PDMS microarrays. Microraft arrays were fabricated with mechanical tension stored within the PDMS substrate. These membranes deformed 20× less than that of arrays fabricated using prior methods. Modeling of the deformation of pretensioned arrays using linear membrane theory yielded ≤15% error in predicting the array deflection and predicted the impact of cure temperatures up to 120 °C. A mathematical approach was developed to fit models of microraft shape to sparse real-world shape measurements. Automated imaging of cells on pretensioned microarrays using the focal planes predicted by the model produced high quality fluorescence images of cells, enabling accurate cell area quantification (<4% error) at increased speed (13×) relative to conventional methods. Our microfabrication method and simplified, linear modeling approach is readily applicable to control the deformation of similar membranes in MEMs devices, sensors, and microfluidics.


Subject(s)
Dimethylpolysiloxanes/chemistry , Flow Cytometry , Lung Neoplasms/diagnostic imaging , Microarray Analysis , Optical Imaging , Automation , Cell Line, Tumor , Humans , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...