Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol Rep ; 4: 100084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36686577

ABSTRACT

This short paper on yellow head virus Type-1 (YHV-1) of shrimp describes preliminary research on the potential for using YHV-1 attenuated in insect cells to protect shrimp against yellow head disease (YHD). YHV-1 can cause severe mortality in the cultivated shrimp Penaeus (Penaeus) monodon and Penaeus (Litopenaeus) vannamei.  No practical vaccination has been reported. The C6/36 mosquito cell cultures inoculated with YHV-1 become positive by PCR and by immunocytochemistry (immunopositive) for up to 30 split-cell passages. Shrimp injected with homogenates from low-passage cultures die from typical YHV-1 disease while shrimp injected with homogenates from high passage cultures do not, even though they become PCR positive and immunopositive for YHV-1. This suggested that viral attenuation had occurred during insect-cell passaging, and it opened the possibility of using homogenates from high-passage insect cultures as a vaccine against YHV-1. To test this hypothesis, homogenates from 30th-passage, YHV-positive cultures were injected into shrimp followed by challenge with virulent YHV-1. Controls were injected with homogenate from 30th-passage, naive (normal stock) insect-cell cultures. No shrimp mortality occurred following injection of either homogenate, but shrimp injected with the YHV-1 homogenate became both RT-PCR positive and immunopositive. Upon challenge 10 days later with YHV-1, mortality in shrimp injected with naive insect-cell homogenate was 100% within 7 days post-challenge while 100% mortality in the YHV-1 homogenate group did not occur until day 9 post-challenge. Kaplan-Meier log-rank survival analysis revealed that survival curves for the two groups were significantly different (p < 0.001). The cause of delay in mortality may be worthy of further investigation.

2.
Antiviral Res ; 98(3): 449-56, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603496

ABSTRACT

We have shown previously that ultrafiltrates (5 kDa cutoff) of cell-free medium from mosquito cell cultures persistently infected with DENV serotype 2 (DENV-2) contained a novel antiviral agent (called viprolaxikine) that could protect pre-treated, naïve mosquito cells from DENV infection. Here, we show that viprolaxikine also reduced DENV-2 titers by almost 4 logs (>99.9%) when compared to Vero cells mock-treated with ultrafiltrates from cultures of uninfected mosquito cells. Protease treatment removed the anti-DENV-2 activity. Pre-incubation for 48-h was required to obtain the maximum, dose-dependent protection against DENV-2, indicating that the antiviral activity was based on the interaction between Vero cells and viprolaxikine rather than direct action of viprolaxikine on DENV-2. Activity was highest against DENV-2, but there was also significant activity against the 3 other DENV serotypes. LC-MS-MS analysis revealed that the active viprolaxikine fraction contained anionic, antiviral peptides, each comprised of 7 amino acids (DDHELQD, DETELQD and DEVMLQD or DEVLMQD) and with a common sequence motif of D-D/E-X-X-X-Q-D. These sequences do not occur in the dengue virus genome, suggesting that the peptides are produced by the host insect cells when persistently infected with DENV-2. These peptides represent a new class of anionic, insect-derived, antiviral peptides with activity against a flavivirus in both mammalian and insect cells.


Subject(s)
Antiviral Agents/isolation & purification , Culicidae/virology , Dengue Virus/drug effects , Dengue/drug therapy , Peptides/isolation & purification , Amino Acid Motifs , Animals , Anions/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Chlorocebus aethiops , Culicidae/metabolism , Cytokines/isolation & purification , Cytokines/pharmacology , Dengue/metabolism , Dengue/pathology , Dengue Virus/pathogenicity , Dose-Response Relationship, Drug , Haplorhini , Host-Pathogen Interactions , Insect Proteins/isolation & purification , Insect Proteins/pharmacology , Peptides/chemical synthesis , Peptides/pharmacology , Time Factors , Vero Cells , Viral Load/drug effects
3.
BMC Microbiol ; 10: 290, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21078201

ABSTRACT

BACKGROUND: With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. RESULTS: Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2) and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. CONCLUSIONS: This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.


Subject(s)
Aedes/immunology , Cytokines/immunology , Dengue Virus/physiology , Insect Vectors/immunology , Aedes/virology , Animals , Cell Line , Dengue Virus/immunology , Insect Vectors/virology
4.
Dis Aquat Organ ; 90(1): 77-83, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20597433

ABSTRACT

Research on crustacean viruses is hampered by the lack of continuous cell lines susceptible to them. To overcome this problem, we previously challenged immortal mosquito and lepidopteran cell lines with shrimp yellow head virus (YHV), followed by serial, split-passage of whole cells, and showed that this produced cells that persistently expressed YHV antigens. To determine whether such insect cultures positive for YHV antigens could be used to infect shrimp Penaeus monodon with YHV, culture supernatants and whole-cell homogenates were used to challenge shrimp by injection. Shrimp injected with culture supernatants could not be infected. However, shrimp injection-challenged with whole-cell homogenates from Passage 5 (early-passage) of such cultures died with histological and clinical signs typical for yellow head disease (YHD), while homogenates of mock-passaged, YHV-challenged cells did not. By contrast, shrimp challenged with cell homogenates of late-passage cultures became infected with YHV, but survived, suggesting that YHV attenuation had occurred during its long-term serial passage in insect cells. Thus, YHV could be propagated successfully in C6/36 mosquito cells and used at low passage numbers as a source of inoculum to initiate lethal infections in shrimp. This partially solves the problem of lack of continuous shrimp cell lines for cultivation of YHV.


Subject(s)
Culicidae/cytology , Roniviridae/physiology , Virus Cultivation/methods , Animals , Cell Line , Virus Replication/physiology
5.
BMC Microbiol ; 10: 14, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20089150

ABSTRACT

BACKGROUND: It is known that insects and crustaceans can carry simultaneous, active infections of two or more viruses without showing signs of disease, but it was not clear whether co-infecting viruses occupied the same cells or different cells in common target tissues. Our previous work showed that successive challenge of mosquito cell cultures followed by serial, split-passage resulted in stabilized cultures with 100% of the cells co-infected with Dengue virus (DEN) and an insect parvovirus (densovirus) (DNV). By addition of Japanese encephalitis virus (JE), we tested our hypothesis that stable, persistent, triple-virus co-infections could be obtained by the same process. RESULTS: Using immunocytochemistry by confocal microscopy, we found that JE super-challenge of cells dually infected with DEN and DNV resulted in stable cultures without signs of cytopathology, and with 99% of the cells producing antigens of the 3 viruses. Location of antigens for all 3 viruses in the triple co-infections was dominant in the cell nuclei. Except for DNV, this differed from the distribution in cells persistently infected with the individual viruses or co-infected with DNV and DEN. The dependence of viral antigen distribution on single infection or co-infection status suggested that host cells underwent an adaptive process to accommodate 2 or more viruses. CONCLUSIONS: Individual mosquito cells can accommodate at least 3 viruses simultaneously in an adaptive manner. The phenomenon provides an opportunity for genetic exchange between diverse viruses and it may have important medical and veterinary implications for arboviruses.


Subject(s)
Culicidae/virology , Dengue Virus/pathogenicity , Densovirus/pathogenicity , Encephalitis Virus, Japanese/pathogenicity , Animals , Cell Line , Culicidae/cytology , Flow Cytometry , Insect Vectors/virology , Microscopy, Confocal , Virus Diseases/virology
6.
Dev Comp Immunol ; 32(9): 1063-75, 2008.
Article in English | MEDLINE | ID: mdl-18397805

ABSTRACT

To study persistent viral co-infections in arthropods, we first produced stable, persistently infected C6/36 mosquito cell cultures by serial passage of exponentially growing whole cells infected with either a densovirus (AalDNV) or Dengue virus (DEN-2). We then obtained stable, persistent co-infections by reciprocal super-challenge and similar passaging. Persistently infected cultures did not differ from naïve-cell cultures in growth rate and cell morphology. Nor did they differ in high production of both viruses with high infection rates for naïve C6/36 cells. Immunocytochemistry revealed that 99-100% of the cells were coinfected but that super-infection order had some effect on antigen distribution for the two viruses. Our results combined with existing field information and previously published experimental work suggest that the capacity to support stable, viral co-infections may be a general phenomenon for arthropod cells, and that they may be achieved easily and rapidly by serial passaging of whole cultured cells. Such persistent infections would facilitate studies on interactions between co-infecting viruses.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Densovirinae/physiology , Aedes/cytology , Aedes/ultrastructure , Animals , Cell Line , Cell Proliferation , Dengue Virus/genetics , Densovirinae/genetics , Genome, Viral , Microscopy, Electron, Transmission , Serial Passage
SELECTION OF CITATIONS
SEARCH DETAIL
...