Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Microbiol ; 56(1)2018 01.
Article in English | MEDLINE | ID: mdl-29093108

ABSTRACT

Fosfomycin maintains activity against most Escherichia coli clinical isolates, but the growth of E. coli colonies within the zone of inhibition around the fosfomycin disk is occasionally observed upon susceptibility testing. We aimed to estimate the frequency of such nonsusceptible inner colony mutants and identify the underlying resistance mechanisms. Disk diffusion testing of fosfomycin was performed on 649 multidrug-resistant E. coli clinical isolates collected between 2011 and 2015. For those producing inner colonies inside the susceptible range, the parental strains and their representative inner colony mutants were subjected to MIC testing, whole-genome sequencing, reverse transcription-quantitative PCR (qRT-PCR), and carbohydrate utilization studies. Of the 649 E. coli clinical isolates, 5 (0.8%) consistently produced nonsusceptible inner colonies. Whole-genome sequencing revealed the deletion of uhpT encoding hexose-6-phosphate antiporter in 4 of the E. coli inner colony mutants, while the remaining mutant contained a nonsense mutation in uhpA The expression of uhpT was absent in the mutant strains with uhpT deletion and was not inducible in the strain with the uhpA mutation, unlike in its parental strain. All 5 inner colony mutants had reduced growth on minimal medium supplemented with glucose-6-phosphate. In conclusion, fosfomycin-nonsusceptible inner colony mutants can occur due to the loss of function or induction of UhpT but are rare among multidrug-resistant E. coli clinical strains. Considering that these mutants carry high biological costs, we suggest that fosfomycin susceptibility of strains that generate inner colony mutants can be interpreted on the basis of the zone of inhibition without accounting for the inner colonies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Disk Diffusion Antimicrobial Tests , Escherichia coli/drug effects , Fosfomycin/pharmacology , Carbohydrate Metabolism , Culture Media/chemistry , DNA-Binding Proteins/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Genome, Bacterial/genetics , Glucose-6-Phosphate/metabolism , Glucose-6-Phosphate/pharmacology , Monosaccharide Transport Proteins/genetics , Mutation , Mutation Rate , Reverse Transcriptase Polymerase Chain Reaction , Transcriptional Activation
3.
J Clin Microbiol ; 54(12): 2937-2941, 2016 12.
Article in English | MEDLINE | ID: mdl-27629901

ABSTRACT

Treatment options for infections due to carbapenem-resistant Acinetobacter baumannii are extremely limited. Minocycline is a semisynthetic tetracycline derivative with activity against this pathogen. This study compared susceptibility testing methods that are used in clinical microbiology laboratories (Etest, disk diffusion, and Sensititre broth microdilution methods) for testing of minocycline, tigecycline, and doxycycline against 107 carbapenem-resistant A. baumannii clinical isolates. Susceptibility rates determined with the standard broth microdilution method using cation-adjusted Mueller-Hinton (MH) broth were 77.6% for minocycline and 29% for doxycycline, and 92.5% of isolates had tigecycline MICs of ≤2 µg/ml. Using MH agar from BD and Oxoid, susceptibility rates determined with the Etest method were 67.3% and 52.3% for minocycline, 21.5% and 18.7% for doxycycline, and 71% and 29.9% for tigecycline, respectively. With the disk diffusion method using MH agar from BD and Oxoid, susceptibility rates were 82.2% and 72.9% for minocycline and 34.6% and 34.6% for doxycycline, respectively, and rates of MICs of ≤2 µg/ml were 46.7% and 23.4% for tigecycline. In comparison with the standard broth microdilution results, very major rates were low (∼2.8%) for all three drugs across the methods, but major error rates were higher (∼5.6%), especially with the Etest method. For minocycline, minor error rates ranged from 14% to 37.4%. For tigecycline, minor error rates ranged from 6.5% to 69.2%. The majority of minor errors were due to susceptible results being reported as intermediate. For minocycline susceptibility testing of carbapenem-resistant A. baumannii strains, very major errors are rare, but major and minor errors overcalling strains as intermediate or resistant occur frequently with susceptibility testing methods that are feasible in clinical laboratories.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Doxycycline/pharmacology , Microbial Sensitivity Tests/methods , Minocycline/analogs & derivatives , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Drug Resistance, Bacterial , Humans , Minocycline/pharmacology , Tigecycline
SELECTION OF CITATIONS
SEARCH DETAIL
...