Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 9663, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32541782

ABSTRACT

Additive manufacturing currently facilitates new avenues for materials discovery that have not been fully explored. In this study we reveal how additive manufacturing can be leveraged to produce dispersion strengthened (DS), multi-principal element alloys (MPEA) without the use of traditional mechanical alloying or chemical reactions. This new processing technique employed resonant acoustic mixing to coat an equiatomic NiCoCr powder with nano-scale yttrium oxides. Then, through laser powder bed fusion (L-PBF), the coated powder was successfully consolidated into 99.9% dense parts. Microstructural analysis confirmed the successful incorporation and dispersion of nano-scale oxides throughout the build volume. Furthermore, high temperature mechanical testing of the DS alloys showed significant improvements in strength and ductility over the baseline NiCoCr. As a result, this recently discovered processing route opens a new alloy design and production path that is synergistic between additive manufacturing and dispersion strengthening, possibly enabling a new generation of high-performance alloys.

2.
Adv Mater ; 29(41)2017 Nov.
Article in English | MEDLINE | ID: mdl-28906570

ABSTRACT

Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al-Cu alloys to measure kinetics of different nanoscale phases in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz-Slyozov-Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Finally, this study sheds light on the possibilities for establishing new theories for dislocation-particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.

SELECTION OF CITATIONS
SEARCH DETAIL
...