Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 331: 118301, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735419

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Many ethnopharmacological properties (anti-tumor, etc.) have been credited to Plectranthus esculentus tuber but the scientific basis has not been established. AIM OF THE STUDY: To evaluate the effect of methanol extract of P. esculentus tuber (MEPET) (phase 1) and its fractions (phase 2) on benign prostatic hyperplasia (BPH) in rats. MATERIALS AND METHODS: The study was conducted in two phases. Phase 1, thirty-five male albino rats (6 weeks old) were divided into seven groups of five rats each: normal control (NC) received olive oil (subcutaneously) and water (orally); disease control (DC) received testosterone propionate (TP) (3 mg/kg) and water; test groups (1,2,3 and 4) received TP + MEPET at 100, 200, 400, 600 mg/kg respectively; positive control, received TP + finasteride (5 mg/70 kg). After 28 days, their relative prostate weights (RPW) and prostate specific antigen (PSA) were determined. Phase 2, thirty rats were divided into 6 groups of 5 rats each: NC received olive oil (subcutaneously daily) and dimethyl sulfoxide (DMSO) (orally); DC received TP (3 mg/kg), and DMSO; test group 1 received TP and aqueous fraction of MEPET (400 mg/kg); test group 2 received TP and methanol fraction of MEPET (400 mg/kg); test group 3 received TP, and ethyl acetate fraction of MEPET (400 mg/kg); positive control received TP and finasteride (5 mg/70 kg). After 28 days, their erythrocyte sedimentation rates, RPW, prostate levels of PSA, DHT, inflammatory, apoptotic markers and prostate histology were determined. RESULTS: Ethyl acetate fraction of MEPET modulated most of the parameters of BPH in the rats in a manner akin to finasteride as corroborated by prostate histology. CONCLUSIONS: EFPET could be useful in the treatment of BPH.


Subject(s)
Methanol , Plant Extracts , Plectranthus , Prostatic Hyperplasia , Rats, Wistar , Animals , Male , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology , Prostatic Hyperplasia/chemically induced , Plant Extracts/pharmacology , Methanol/chemistry , Plectranthus/chemistry , Rats , Prostate/drug effects , Prostate/pathology , Prostate-Specific Antigen/blood , Plant Tubers , Organ Size/drug effects , Solvents/chemistry , Testosterone Propionate
2.
J Food Biochem ; 46(12): e14473, 2022 12.
Article in English | MEDLINE | ID: mdl-36251589

ABSTRACT

The effect of 21% fructose drinking water (FDW) (w/v) on some parameters of metabolic syndrome, hepatic, and skeletal muscular histology of rats was studied using standard techniques. Twenty male albino rats were divided into four groups of 5 rats each in this in vivo study. Group I received distilled water, group 2 received FDW, group 3 received FDW and metformin (300 mg/kg body weight daily, orally), group 4 received FDW and 1% tert-butylhydroquinone feed. FDW changed the serum leptin, triacylglycerol, very low-density lipoprotein, and C-reactive protein levels of the rats, inducing hypertriglyceridemia, oxidative stress, and inflammation in their liver (but not the skeletal muscle) and insulin resistance which were modulated with metformin and tBHQ as corroborated by liver and muscle histology. The study reveals the potentials of metformin and tBHQ in mitigating hepatic and skeletal muscular morphological changes arising from exposure to high fructose drinks. PRACTICAL APPLICATIONS: There has been an increase in the global consumption of fructose (either as a sweetner in beverages or soft and carbonated drinks) in the last few decades and this has been positively correlated with the global increase in metabolic complications. Regular intake of fructose contributes to the pathogenesis of lipid disorders, oxidant stress, and chronic inflammation, which are linked with the metabolic syndrome components (MetS) (obesity, insulin resistance, and cardiovascular diseases) as well as increased morbidity and mortality. Given that the approaches that have been applied to treat the MetS have not been able to totally arrest it, currenty study which showed that tBHQ abrogated fructose-induced insulin resistance, dyslipidemia, hepatic, and skeletal muscular pathology in the rats places tBHQ in the spotlight as a nutraceutical that could be of relevance in mitigating high dietary fructose-induced hepatic and skeletal muscular pathology.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Metformin , Male , Rats , Fructose/adverse effects , Inflammation/metabolism , Liver , Metabolic Syndrome/drug therapy , Metabolic Syndrome/etiology , Metformin/pharmacology , Muscle, Skeletal/metabolism , Oxidants/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...