Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 254(1): 137-145, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26669320

ABSTRACT

In the Cape Fynbos of South Africa, Psoralea pinnata (L.) plants occur naturally in both wetland and well-drained soils and yet effectively fix N2 under the two contrasting conditions. In this study, nodule structure and functioning in P. pinnata plants from the two habitats were evaluated using light and transmission electron microscopy (TEM), as well as the 15N natural abundance technique. The results showed that, structurally, fully developed P. pinnata nodules were spherical in shape with six components (namely, lenticels, periderm, outer cortex, middle cortex, inner cortex, and a central bacteria-infected medulla region). Morphometric analysis revealed 44 and 84 % increase in cell area and volume of wetland nodules compared to those from upland. The percentage area of nodules occupied by the middle cortex in wetland nodules was twice that of upland nodules. As a result, the size of the medulla region in wetland nodules was significantly reduced compared to upland nodules. Additionally, the average area of medulla occupied by intercellular air spaces in wetland nodules was about five times that of upland nodules (about 431 % increase in wetland over upland nodules). TEM data also showed more bacteroids in symbiosomes of upland nodules when compared to wetland nodules. However, isotopic analysis of above-ground plant parts revealed no differences in symbiotic parameters such as N concentration, ∂15N and %Ndfa between wetland and upland P. pinnata plants. These results suggest that, under limiting O2 conditions especially in wetlands, nodules make structural and functional adjustments to meet the O2 demands of N2-fixing bacteroids.


Subject(s)
Adaptation, Physiological , Psoralea/growth & development , Psoralea/microbiology , Root Nodules, Plant/physiology , Symbiosis , Wetlands , Nitrogen Isotopes , Psoralea/ultrastructure , Root Nodules, Plant/cytology , Root Nodules, Plant/microbiology , Root Nodules, Plant/ultrastructure , Soil , South Africa , Subcellular Fractions/metabolism
2.
Protoplasma ; 251(4): 869-79, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24366571

ABSTRACT

There is little information on in situ distribution of nutrient elements in N2-fixing nodules. The aim of this study was to quantify elemental distribution in tissue components of N2-fixing nodules harvested from Psoralea pinnata plants grown naturally in wetland and upland conditions in the Cape Fynbos. The data obtained from particle-induced X-ray emission revealed the occurrence of 20 elements (Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, Mo and Ba) in nodule components. Although, in upland plants, the concentrations of S, Fe, Si, Mn and Cu showed a steady increase from the middle cortex to the medulla region of P. pinnata nodules, in wetland plants, only S, Fe and Mn showed an increase in concentration from the middle cortex to the bacteria-infected medulla of P. pinnata nodules. By contrast, the concentrations of Cl, K, Ca, Zn and Sr decreased from middle cortex to nodule medulla. The alkaline earth, alkali and transition elements Rb, Sr, Y and Zr, never before reported in N2-fixing nodules, were found to occur in root nodules of P. pinnata plants grown in both wetland and upland conditions.


Subject(s)
Elements , Psoralea/metabolism , Root Nodules, Plant/metabolism , South Africa , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...