Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Mol Divers ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302538

ABSTRACT

Microwave-assisted protocols have become extensively accepted across various scientific and technological domains because of their numerous advantages, shorter reaction times, higher yields, and often milder reaction conditions. In this review, we focus on the synthesis of N, O, and S-containing heterocyclic structural cores, crucial in the development of pharmaceuticals, agrochemicals, and materials science following through conventional and microwave method via eliminating the side products and enhances the product yield that is nowadays the biggest barrier for a synthetic chemist. The major findings emphasizes the substantial advantages of microwave-assisted techniques over conventional synthetic protocols. This comparative study underscores the potential of microwave-assisted techniques to revolutionize heterocyclic compound synthesis, providing insights into optimizing reaction conditions and expanding the scope of chemical synthesis in industrial applications.

2.
Pharmaceuticals (Basel) ; 17(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39338273

ABSTRACT

Some antibiotics that are frequently employed are ß-lactams. In light of the hydrolytic process of ß-lactamase, found in Gram-negative bacteria, inhibitors of ß-lactamase (BLIs) have been produced. Examples of first-generation ß-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the ß-lactamase classes. Various methods have been utilized to develop second-generation ß-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature ß-lactamase inhibitors. This review describes numerous promising second-generation ß-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-ß-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MßL (metallo-ß-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of ß-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.

3.
Environ Monit Assess ; 196(8): 684, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954087

ABSTRACT

Heavy metal contamination in leafy vegetables poses significant health risks, highlighting the urgent need for stringent monitoring and intervention measures to ensure food safety and mitigate potential adverse effects on public health. This study investigates the levels of heavy metals, including cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and copper (Cu), in locally grown and commercially available leafy vegetables, comparing them to the safety limits established by WHO/FAO. The results revealed that levels of Cd, Cr, Ni, and Pb in the vegetables exceeded WHO/FAO limits, while Zn and Cu remained within permissible bounds. Marketed vegetables exhibited higher metal concentrations than those from nearby farms. For Cu (0.114-0.289 mg/kg) and Zn (0.005-0.574 mg/kg), the daily intake of metals (DIM) was below the dietary intake (DI) and upper limit (UL). Cd's DIM (0.031-0.062 mg/kg) remained below the UL but exceeded the DI. Marketed kale and mint surpassed both DI and UL limits for Ni, while local produce only exceeded the DI. All vegetables had DIM below the DI, except for mint and kale. For Pb, every vegetable exceeded DI limits, with market samples contributing significantly. Cr's DIM ranged from 0.028 to 1.335 mg/kg, for which no set maximum daily intake exists. The health risk index (HRI) values for Zn, Cd, Cu, Ni, and Pb suggested potential health risks associated with leafy greens, while Cr's HRI was below 1. The study underscores the need for stringent monitoring and intervention measures to mitigate the health risks posed by heavy metal contamination in leafy vegetables. These findings suggest that consuming these leafy greens may put consumers at considerable risk for health problems related to Cd, Cu, Ni, Pb, and Zn exposure.


Subject(s)
Environmental Monitoring , Food Contamination , Metals, Heavy , Public Health , Soil Pollutants , Vegetables , Metals, Heavy/analysis , Vegetables/chemistry , Food Contamination/analysis , Soil Pollutants/analysis , Humans , Risk Assessment
4.
J Biomol Struct Dyn ; : 1-18, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502688

ABSTRACT

Bell's palsy (BP) can result in facial paralysis. Inflammation or injury to the cranial nerves that regulate the facial muscles is primarily responsible for that disease. Commiphora wightii remains recognized as a cure for a few human ailments. This study focused on therapeutic phenomena of C. wightii for the treatment of Bell's palsy, utilizing the network drug discovery and molecular docking techniques. Active biological constituents of C. wightii were retrieved from literature and independent databases. Potential therapeutic targets (431) of 13 bioactive phytochemicals were fetched via SwissTargetPrediction tool. Putative intersecting targets (855) of Bell's palsy were computed through the DisGeNET and GeneCards datasets. Subsequently, by the analysis of potential shared targets (87) of C. wightii and Bell's palsy, a Venn diagram was drawn. DAVID database was used to evaluate gene functional annotations and enriched pathways that are involved in Bell's palsy. STRING database was used for generating the protein-protein relationship complex. Visual presentations of the interactions of potential targets to active chemical constituents were done by the Cytoscape. Whereas, the conformational research sorted out 10 key targets through the protein-protein interactions network. Moreover, the capacity of therapeutic ingredients to interact with a target inhibiting Bell's palsy was confirmed by molecular docking, which might ratify the findings of network pharmacology. In the molecular complex of AKT1-cholesterol, a 100-ns simulation unveiled a graceful stability, with a minimal 0.167 Å ligand shift and resilient hydrogen bonds (ASN54 and SER205). The final 20 ns showcased a P1 motif pirouette, gracefully forming aromatic bonds with H165 and W186, underscoring the complex's dynamic finesse. This study evaluated compound-target interactions and their impact on disease-related genes. It revealed that five genes (AKT1, TNF, MAPK3, EGFR and SRC) of C. wightii might be useful therapeutic targets for the treatment of Bell's palsy, as well as helping in lowering down the blood pressure.Communicated by Ramaswamy H. Sarma.

5.
RSC Adv ; 14(10): 6948-6971, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38410364

ABSTRACT

Depression is one of the most mutilating conditions in the world today. It has been difficult to make advancements toward better, more effective therapies since the introduction of antidepressant medicines in the late 1950s. One important field of medicinal chemistry is the synthesis of antidepressant molecules through metal-catalyzed procedures. The important role that different transition metals, including iron, nickel, ruthenium, and others, serve as catalysts in the synthesis of antidepressants is examined in this review. Key structural motifs included in antidepressant drugs such as tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and others can be synthesized in a variety of effective ways using metal-catalyzed steps. This review examines current developments in the catalytic synthesis of antidepressants and their potential application over the previous thirteen years.

6.
Int J Biol Macromol ; 264(Pt 1): 130208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403229

ABSTRACT

Microbial growth and exposure to UV light is a persistent global concern resulting in food spoilage, therefore, smart packaging is crucial for the availability of safer and quality food. Present work describes fabrication of chitosan (CH) and gelatin (GL) based nanocomposite films by introducing green source, highly fluorescent Vachillia nilotica gum-derived carbon dots (VNG-CDs). The VNG-CDs and incorporated CH/GL nanocomposite films were characterized by UV-Visible, FTIR, XRD, SEM and TGA analysis. The FTIR and XRD data revealed that VNG-CDs, chitosan, gelatin, and glycerol are combined/interlinked to form homogeneous nanocomposite films. The inclusion of VNG-CDs to CS/GL-CDs nanocomposite film efficiently enhanced the thermal stability and improved mechanical properties. VNG-CDs added to films markedly blocked the ultraviolet light and their effectiveness improved as concentration of CDs increases, being >90 % in UVC (200-280 nm) region. The prepared CS/GL-CDs nanocomposite films manifested radical scavenging activity, reducing capability and also excellently inhibited growth of E. coli, K. pneumonia and S. aureus bacteria. The viability of CS/GL-CDs nanocomposite films examined using banana as a model fruit extending the storage time by two weeks. In conclusion, CH/GL films containing VNG-CDs can be developed into smart packaging materials with enhanced protection and antimicrobial properties.


Subject(s)
Chitosan , Nanocomposites , Food Packaging , Carbon , Anti-Bacterial Agents/pharmacology , Gelatin , Staphylococcus aureus , Escherichia coli
8.
Environ Sci Pollut Res Int ; 30(4): 9290-9310, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36464745

ABSTRACT

Nitrate pollution has become a serious environmental concern all over the world including in China due to the mismanagement of water resources and human activities. Agricultural runoff and industrial and nuclear waste are among the major sources of nitrate pollution. Consuming nitrate-rich water can cause many chronic diseases including digestive problems, which can lead to many types of cancer and other serious health issues. Denitrification is the natural process for nitrate reduction under aerobic conditions, but it cannot handle an excess of nitrate, so several methods have been adopted for nitrate removal, i.e., biological, chemical, physicochemical, and electrochemical reduction removal. Among all, electrochemical reduction removal is a cost-effective and environmental-friendly process. To obtain the maximal elimination efficiency ideal conditions of current intensity, pH, plate distance, initial nitrate concentration, and type of electrolyte solution should be studied for effective nitrate removal. Electrochemical reduction removal of nitrate involves the transfer of electrons and hydrogenation. Besides an efficient nitrate removal process, electrochemical reduction removal has some drawbacks like sludge formation, low selectivity for nitrogen, and production of brine that limit its long-term implementation. This review focused on nitrate pollution, previous nitrate removal strategies, and essential principles for understanding the mechanism of electrochemical reduction removal and controlling the products of the reaction.


Subject(s)
Nitrates , Sewage , Humans , Water , Nitrogen , China , Denitrification
9.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422521

ABSTRACT

Terpenes are a group of natural products made up of molecules with the formula (C5H8)n that are typically found in plants. They are widely employed in the medicinal, flavor, and fragrance industries. The total synthesis of terpenes as well as their origin and biological potential are discussed in this review.

10.
Pharmaceutics ; 14(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145718

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the deadliest reproductive tract malignancies that form on the external tissue covering of an ovary. Cassia fistula is popular for its anti-inflammatory and anticarcinogenic properties in conventional medications. Nevertheless, its molecular mechanisms are still unclear. The current study evaluated the potential of C. fistula for the treatment of EOC using network pharmacology approach integrated with molecular docking. Eight active constituents of C. fistula were obtained from two independent databases and the literature, and their targets were retrieved from the SwissTargetPrediction. In total, 1077 EOC associated genes were retrieved from DisGeNET and GeneCardsSuite databases, and 800 potential targets of eight active constituents of C. fistula were mapped to the 1077 EOC targets and intersected targets from two databases. Ultimately, 98 potential targets were found from C. fistula for EOC. Finally, the protein-protein interaction network (PPI) topological interpretation revealed AKT1, CTNNB1, ESR1, and CASP3 as key targets. This is the first time four genes have been found against EOC from C. fistula. The major enriched pathways of these candidate genes were established by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) investigations. To confirm the network pharmacology findings, the molecular docking approach demonstrated that active molecules have higher affinity for binding to putative targets for EOC suppression. More pharmacological and clinical research is required for the development of a drug to treat EOC.

11.
J Environ Sci (China) ; 103: 50-58, 2021 May.
Article in English | MEDLINE | ID: mdl-33743918

ABSTRACT

In recent years, poly (butylene adipate-co-terephthalate) (PBAT) has been widely used. However, PBAT-degrading bacteria have rarely been reported. PBAT-degrading bacteria were isolated from farmland soil and identified. The effects of growth factors on the degradation of PBAT and the lipase activity of PBAT-degrading bacteria were assessed. The degradation mechanism was analyzed using scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, X-ray diffraction, and liquid chromatography-mass spectrometry. The results showed that Stenotrophomonas sp. YCJ1 had a significant degrading effect on PBAT. Under certain conditions, the strain could secrete 10.53 U/mL of lipase activity and degrade 10.14 wt.% of PBAT films. The strain secreted lipase to catalyze the degradation of the ester bonds in PBAT, resulting in the production of degradation products such as terephthalic acid, 1,4-butanediol, and adipic acid. Furthermore, the degradation products could participate in the metabolism of YCJ1 as carbon sources to facilitate complete degradation of PBAT, indicating that the strain has potential value for the bioremediation of PBAT in the environment.


Subject(s)
Polyesters , Stenotrophomonas , Adipates , Alkenes , Farms , Phthalic Acids , Soil
12.
Ecotoxicol Environ Saf ; 187: 109765, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31670239

ABSTRACT

A novel polyvinyl alcohol/carboxymethyl cellulose/yeast double degradable hydrogel was prepared with yeast as a foaming agent. The chemical structure of the hydrogel was characterized by FTIR and XPS. The micro-structure of the hydrogel was observed by SEM. The specific surface area and pore size of hydrogel were measured by BET. Methylene blue adsorption capacity of the hydrogels were investigated and the adsorption mechanism was explored. The biodegradability of double degradable hydrogel was investigated. The results showed that yeast was encapsulated in hydrogel by electrostatic action. With the addition of yeast, not only the specific surface area and average pore size of the hydrogel increased but also methylene blue maximum adsorption capacity of the double degradable hydrogel (110 ±â€¯3.5 mg/g) was significantly higher than that of the hydrogel without yeast (57 ±â€¯1.9 mg/g). The adsorption mechanism was dominated by chemical adsorption and was accompanied by biodegradable and electrostatic adsorption. The kinetic data were fitted to the pseudo-second-order kinetic model reasonably well. The introduction of yeast promoted the biodegradable of hydrogel and increased the degradation rate of polyvinyl alcohol in the material with a maximum degradation rate of 45 ±â€¯2.8%.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Hydrogels/chemistry , Methylene Blue/analysis , Polyvinyl Alcohol/chemistry , Saccharomyces cerevisiae/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Biodegradation, Environmental , Kinetics , Models, Theoretical , Porosity , Saccharomyces cerevisiae/metabolism , Surface Properties , Water Purification/methods
13.
R Soc Open Sci ; 6(7): 190504, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417748

ABSTRACT

Biodegradable random copolymers were successfully synthesized by melt polycondensation of poly(butylene succinate) (PBS) and salicylic acid (SA). The obtained copolymers were characterized by proton nuclear magnetic resonance spectroscopy. The effect of different SA contents on the properties of copolymers was investigated by universal testing machine, thermogravimetric analyser, differential scanning calorimetry and X-ray diffraction analysis. The results showed that the copolymers with 0.5% SA contents exhibited excellent elastic modulus (1413.0 MPa) and tensile strength (192.8 MPa), and similar thermal decomposition temperature (≈320°C) compared with pure PBS. By molecular docking simulations, it was proved that the degradability of copolymers was more effective than that of pure PBS with a binding energy of -5.77 kcal mol-1. PBS copolymers with a small amount of SA were not only biodegradable but could stimulate the growth of green vegetables. So biodegradable copolymers can be used over a wide range as they are environmentally friendly.

14.
Int J Mol Sci ; 17(7)2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27367666

ABSTRACT

Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 µg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 µg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 µg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 µg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Thiophenes/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Thiophenes/pharmacology , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL