Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36422391

ABSTRACT

Broadband amplification in the O+E-band is very desirable nowadays as a way of coping with increasing bandwidth demands. The main issue with doped fiber amplifiers working in this band such as the bismuth-doped fiber amplifier is that they are costly and not widely available. Therefore, a wideband and flat-gain hybrid optical amplifier (HOA) covering the O+E-band based on a parallel combination of a praseodymium-doped fiber amplifier (PDFA) and a semiconductor optical amplifier (SOA) is proposed and demonstrated through numerical simulations. The praseodymium-doped fiber (PDF) core is pumped using a laser diode with a power of 500 mW that is centered at a wavelength of 1030 nm. The SOA is driven by an injection current of 60 mA. The performance of the HOA is analyzed by the optimization of various parameters such as the PDF length, Pr3+ concentration, pump wavelength, and injection current. A flat average gain of 24 dB with a flatness of 1 dB and an output power of 9.6 dBm is observed over a wavelength range of 1270-1450 nm. The noise figure (NF) varies from a minimum of 4 dB to a maximum of 5.9 dB for a signal power of 0 dBm. A gain reduction of around 4 dB is observed for an O-band signal at a wavelength of 1290 nm by considering the up-conversion effect. The transmission performance of the designed HOA as a pre-amplifier is evaluated based on the bit-error rate (BER) analysis for a coarse wavelength-division multiplexing (CWDM) system of eight on-off keying (OOK)-modulated channels, each having a data rate of 10 Gbps. An error-free transmission over 60 km of standard single-mode fiber (SMF) is achieved for different data rates of 5 Gbps, 7.5 Gbps, and 10 Gbps.

2.
Front Plant Sci ; 6: 725, 2015.
Article in English | MEDLINE | ID: mdl-26442039

ABSTRACT

Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4-5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...