Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 117(1): 144-51, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20624997

ABSTRACT

The use of tubulin binders (TBs) in the treatment of cancer often is associated with cardiotoxicity, the mechanism of which has not been elucidated. To test the hypothesis that interstitial cells of the myocardium are the primary target of TBs, we evaluated the acute effects of a single iv administration of three reference TBs: colchicine (0.2 and 2 mg/kg), vinblastine (0.5 and 3 mg/kg), and vincristine (0.1 and 1 mg/kg) 6 and 24 h after dosing. Mitotic arrest was identified at 24 h in all high-dose groups based on an increase in the number of mitotic figures in the interstitium coupled with a decrease in the number of Ki67-positive interstitial cells. Analysis of the myocardial transcriptomic data further supported G2/M cell cycle arrest 6 h after dosing with the high-dose groups of all three compounds. Apoptotic figures and an increase in the number of cleaved caspase 3-positive cells were identified at 6 and 24 h at the highest dose of each compound predominantly in interstitial cells, whereas a few cardiomyocytes were affected as well. Transcriptomic profiling of the myocardium further suggested that some of the affected interstitial cells were endothelial cells based on the upregulation of genes typically associated with vascular damage and downregulation of endothelial cell-specific molecule 1 and apelin. Taken together, these data identify endothelial cells of the myocardium as the primary target of the cardiotoxicity of TBs and identify cell cycle arrest as the mechanism of this toxicity.


Subject(s)
Antineoplastic Agents/toxicity , Endothelium, Vascular/drug effects , Heart/drug effects , Tubulin/metabolism , Animals , Antineoplastic Agents/metabolism , Endothelium, Vascular/pathology , Gene Expression Profiling , Immunohistochemistry , Male , Rats , Rats, Wistar
2.
Mol Cancer Ther ; 8(9): 2517-25, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19755512

ABSTRACT

A genomics-based approach to identify pharmacodynamic biomarkers was used for a cyclin-dependent kinase inhibitory drug. R547 is a potent cyclin-dependent kinase inhibitor with a potent antiproliferative effect at pharmacologically relevant doses and is currently in phase I clinical trials. Using preclinical data derived from microarray experiments, we identified pharmacodynamic biomarkers to test in blood samples from patients in clinical trials. These candidate biomarkers were chosen based on several criteria: relevance to the mechanism of action of R547, dose responsiveness in preclinical models, and measurable expression in blood samples. We identified 26 potential biomarkers of R547 action and tested their clinical validity in patient blood samples by quantitative real-time PCR analysis. Based on the results, eight genes (FLJ44342, CD86, EGR1, MKI67, CCNB1, JUN, HEXIM1, and PFAAP5) were selected as dose-responsive pharmacodynamic biomarkers for phase II clinical trials.


Subject(s)
Biomarkers, Tumor/blood , Cyclin-Dependent Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Pyrimidines/therapeutic use , Adult , Aged , Aged, 80 and over , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Neoplasms/blood , Neoplasms/enzymology , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Pyrimidines/pharmacology
3.
Toxicol Pathol ; 36(2): 256-64, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18413786

ABSTRACT

Gene expression was evaluated in the myocardium of male Wistar rats after a single subcutaneous administration of 0.5 mg of isoproterenol, a beta-adrenergic agonist that causes acute tachycardia with subsequent myocardial necrosis. Histology of the heart, clinical chemistry, and hematology were evaluated at 9 time points (0.5 hours to 14 days postinjection). Myocardial gene expression was evaluated at 4 time points (1 hour to 3 days). Contraction bands and loss of cross-striation were identified on phosphotungstic acid-hematoxylin-stained sections 0.5 hours postdosing. Plasma troponin I elevation was detected at 0.5 hours, peaked at 3 hours, and returned to baseline values at 3 days postdosing. Interleukin 6 (Il6) expression spiked at 1 to 3 hours and was followed by a short-lived, time-dependent dysregulation of its downstream targets. Concurrently and consistent with the kinetics of the histologic findings, many pathways indicative of necrosis/apoptosis (p38 mitogen-activated protein kinase [MAPK] signaling, NF-kappaB signaling) and adaptation to hypertension (PPAR signaling) were overrepresented at 3 hours. The 1-day and 3-day time points indicated an adaptive response, with down-regulation of the fatty acid metabolism pathway, up-regulation of the fetal gene program, and superimposed inflammation and repair at 3 days. These results suggest early involvement of Il6 in isoproterenol-induced myocardial necrosis and emphasize the value of early time points in transcriptomic studies.


Subject(s)
Adrenergic beta-Agonists/toxicity , Interleukin-6/genetics , Isoproterenol/toxicity , Myocardial Infarction/genetics , Up-Regulation/physiology , Animals , Disease Models, Animal , Gene Expression Profiling , Heart/drug effects , Injections, Subcutaneous , Interleukin-6/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Rats , Rats, Wistar , Time Factors , Troponin I/blood
4.
AAPS J ; 8(4): E718-28, 2006 Nov 22.
Article in English | MEDLINE | ID: mdl-17233535

ABSTRACT

Steroid hormone receptors (SHRs), such as glucocorticoid receptors (GR) and progesterone receptors (PR), are shuttling proteins that undergo continuous nuclear import and export. Various mechanisms have been proposed to explain the localization of SHRs. It has been suggested that the ligand-binding domain (LBD) of SHRs is important in determining the subcellular localization. We have studied the localization of GR-LBD and PR-LBD alone, as well as of full-length GR and PR in the presence of geldanamycin (GA), a benzoquinoid ansamycin that specifically inhibits heat shock protection (Hsp90), using transient transfections and fluorescent microscopy. Our studies have indicated that GR-LBD and PR-LBD are retained in the cytoplasm via interaction with Hsp90. It was observed that in the unliganded state, treatment with GA translocates these LBDs to the nucleus. Similar results were obtained for full-length PR and GR. Additionally, it was found that after ligand induction, GA accelerated reexport of SHRs after ligand washout, implicating Hsp90 in nuclear retention of SHRs in the washout state. We also propose that a recently found "export" signal present in the LBD of SHRs is involved in interactions with Hsp90 and hence cytoplasmic retention of these receptors. After ligand induction, Hsp90 also may play a role in nuclear retention of SHRs following hormone washout.


Subject(s)
Benzoquinones/pharmacology , Cytoplasm/metabolism , HSP90 Heat-Shock Proteins/metabolism , Lactams, Macrocyclic/pharmacology , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/metabolism , Receptors, Progesterone/antagonists & inhibitors , Receptors, Progesterone/metabolism , Animals , Cell Line, Tumor , Chickens , Cytoplasm/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Ligands , Mice , Protein Binding/drug effects , Protein Binding/physiology
5.
AAPS PharmSci ; 4(3): E18, 2002.
Article in English | MEDLINE | ID: mdl-12423067

ABSTRACT

Signal-mediated protein transport through the nuclear pore complex is of considerable interest in the field of molecular pharmaceutics. Nuclear localization signals can be used to target genes/antisense delivery systems to the nucleus. Studying nuclear export is useful in enhancing the expression and the efficiency of action of these therapeutic agents. The mechanism of nuclear import has been well studied and most of the proteins participating in this mechanism have been identified. The subject of nuclear export is still in the initial stages, and there is a considerable amount of uncertainty in this area. Two main export receptors identified so far are Exportin 1 (Crm1) and Calreticulin. Crm1 recognizes certain leucine-rich amino acid sequences in the proteins it exports called classical nuclear export signals. This paper describes a model system to study, identify, and establish these classical nuclear export signals using green fluorescent protein (GFP). Two putative export signals in the human progesterone receptor (PR) and the strongest nuclear export signal known (from mitogen activated protein kinase kinase [MAPKK]) were studied using this model system.


Subject(s)
Active Transport, Cell Nucleus/physiology , Cell Nucleus/metabolism , Protein Sorting Signals/physiology , Receptors, Cytoplasmic and Nuclear , Animals , Calreticulin/genetics , Calreticulin/metabolism , Cell Nucleus/chemistry , Cytoplasm/chemistry , Cytoplasm/metabolism , Fluorescent Antibody Technique, Indirect , Green Fluorescent Proteins , Humans , Karyopherins/genetics , Karyopherins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Plasmids/genetics , Plasmids/metabolism , Protein Sorting Signals/genetics , Receptors, Progesterone/chemistry , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transfection , Tumor Cells, Cultured , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...