Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 33(4): 274-288, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36795047

ABSTRACT

Based on factual scientific health claims, prebiotics have gained significant importance in ever-growing food and pharmaceutical industries. The diverse nature of distinct prebiotics influences the host differently in distinguishable patterns. Functional oligosaccharides are either plant-derived or commercially prepared. Raffinose, stachyose, and verbascose are the 3 types of raffinose family oligosaccharides (RFOs) that have been extensively used as medicine, cosmetic, and food additives. These dietary fiber fractions avert the adhesion and colonization by enteric pathogens and add nutrition metabolites for a healthy immune system. Enrichment of RFOs in healthy foods should be promoted as these oligosaccharides augment gut microecology by enhancing the health conferring microbes i.e. bifidobacteria and lactobacilli. RFOs influence the host's multiorgan systems due to their physiological and physicochemical properties. For example, the fermented microbial products of such carbohydrates affect neurological processes, including memory, mood, and behavior in humans. Raffinose-type sugar uptake is thought to be a ubiquitous property of bifidobacteria. This review paper summarizes the source of RFOs and their metabolizing entities, highlighting bifidobacterial carbohydrate utilization and health benefits.


Subject(s)
Oligosaccharides , Prebiotics , Humans , Raffinose/metabolism , Oligosaccharides/metabolism , Sugars , Lactobacillus
2.
J Food Biochem ; 46(10): e14302, 2022 10.
Article in English | MEDLINE | ID: mdl-35816322

ABSTRACT

Cancer is a global health issue that is rising swiftly with younger people and an increased number of patients. The role of human microbiota in the pathophysiology of tumors has been paid more and more attention. Microecologics including prebiotics, probiotics, and synbiotics are among the best validated/proven resources for the application of microbiological prophylaxis and therapy. There is strong evidence that microecologics have anti-cancer activity and their potential association with cancer is significant. In this review, we will focus on the role of prebiotics, probiotics, and synbiotics in tumor suppression in maintaining the colon barrier, metabolism, immune regulation, inhibition of host tumor cell proliferation, and epidemiological-based recommendations. Besides, other signs illuminate the role of microecological agents to adjunct the cancer treatment and counter the toxic side effects of cancer drugs. In addition, we will explore their role in chemotherapy, where these probiotics can be used as an adjunct to chemotherapy, counteracting the toxic side effects of chemotherapy drugs to minimize or optimize the therapeutic effect. In the treatment of cancer, we can see the role of prebiotics, probiotics, synbiotics, and their application in cancer patients, and the effectiveness effect can be considered as a clinical benefit. PRACTICAL APPLICATIONS: A large number of studies have shown that microecologics including prebiotics, probiotics, and synbiotics play an important role in regulating intestinal microecology and contribute to the prevention and treatment of cancer, indicating that prebiotics, probiotics, and synbiotics have the potential to be used as microecological modulators in the adjuvant therapy of cancer. However, it is not clear what is the anti-tumor mechanism of these microecologics and how they antagonize the side effects of cancer chemotherapy and protect normal cells. This paper reviews the role of prebiotics, probiotics, and synbiotics in tumor suppression in maintaining the colon barrier, metabolism, immune regulation, and prevention of rapid growth of host cells, as well as their potential role in cancer chemotherapy. This review helps to better understand the relationship between prebiotics, probiotics, and synbiotics with immune regulation, intestinal microecology, metabolic regulation, and cell proliferation and provides strong evidence for their potential application as microecologics in cancer adjuvant therapy.


Subject(s)
Colorectal Neoplasms , Probiotics , Synbiotics , Colorectal Neoplasms/drug therapy , Humans , Intestines/microbiology , Prebiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...