Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ecol Evol ; 23(1): 73, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38062381

ABSTRACT

BACKGROUND: Osyris lanceolata (Hochst. & Steud.) (Santalaceae) is a multipurpose plant highly valued culturally and economically in Africa. However, O. lanceolata populations have rapidly dwindled in East Africa due to overexploitation and this is believed to cause further consequences on the species' genetic diversity and structure within the region. Information regarding a species' genetic diversity and structure is necessary for conservation but this is currently lacking for O. lanceolata in Uganda and Kenya. Lack of adequate scientific data hinders conservation efforts hence threatening the species survival and livelihoods. This study investigated patterns in genetic diversity and structure of O. lanceolata in Uganda and Kenya. Ten polymorphic microsatellite loci were used to genotype 210 individuals: 96 from Ugandan and 114 from Kenyan populations. RESULTS: All populations were highly polymorphic (80-100% polymorphism). A genetic differentiation was found between Kenyan and Ugandan populations. The highest genetic differentiation was among individuals and the least among populations. The Kenyan populations showed higher genetic diversity than Ugandan populations. The Ugandan populations showed more marker deviations from Hardy-Weinberg equilibrium and inbreeding coefficient. Two populations showed evidence of going through a recent bottleneck. There was significant genetic differentiation and structuring at higher K values into larger clusters and observed admixture between populations. The populations were significantly isolated by altitude as opposed to distance and climatic variables. Main barriers were associated with altitude differences. The data supports the idea of long-distance gene-flow between high altitude populations in both countries. CONCLUSION: The divergence in genetic structure suggests unrecognised taxonomic units within O. lanceolata which are characteristic to lower altitudes and higher altitudes including most Kenyan populations with divergent evolutionary patterns. Geographical barriers and environmental gradients could have influenced this genetic divergence, and such patterns may escalate the species microevolutionary processes into full allopatric speciation. Further investigations into the species' genetic admixture and emerging taxonomic units are necessary to guide conservation strategies in the region.


Subject(s)
Genetic Variation , Santalaceae , Humans , Genetic Variation/genetics , Kenya , Uganda , Santalaceae/genetics , Microsatellite Repeats/genetics , Genetics, Population
2.
Plants (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34579313

ABSTRACT

The increasing demand for ornamental, cosmetic and pharmaceutical products is driving exploitation of plant species globally. Sub-Saharan Africa harbours unique and valuable plant resources and is now a target of plant resource depletion. African Sandalwood (Osyris lanceolata), a multi-purpose and drought-tolerant species, has seen increased exploitation for the last thirty years and is now declared endangered. Initiatives to conserve O. lanceolata are not yet successful in Africa due to poor understanding of the species. This review surveys relevant research on the ecology, taxonomy, population dynamics, genetic diversity and ethnobotany of O. lanceolata, and highlights gaps in the literature for further research. A scoping review of grey literature, scholarly papers and reports was applied with pre-determined criteria to screen relevant information. Review findings indicate O. lanceolata is a globally distributed species with no identified center of origin. In Africa, it ranges from Algeria to Ethiopia and south to South Africa; in Europe it occurs in the Iberian Peninsula and Balearic Islands; in Asia from India to China, and also on Socotra. The species has a confusing taxonomy, with unresolved issues in nomenclature, country range distribution, extensive synonymisation and variation in growth form (shrub or tree). The species population is reported to be declining in Africa, but information on population dynamics across its entire range of distribution is anecdotal. Additionally, ecological factors influencing spatial distribution and survival of the species remain unknown. A variety of uses are reported for O. lanceolata globally, including: cultural; medicinal and food; dye; perfumery; timber; ethnoveterinary and phytoremediation. Key research areas and implications for conservation of O. lanceolata in Sub-Saharan Africa are proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...