Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 259: 117758, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33674012

ABSTRACT

This study examined the mechanism of swelling for high acyl (HA) gellan gum and the impacts on the hydrogel mechanical properties and the release of a model drug (glucose). Controlling the material properties and the release of entrapped drugs during use in aqueous environments, such as the stomach or bodily fluids, are crucial in designing functional applications. Swelling of HA gellan gum was controlled by varying the osmotic environment with salts and solvents, and effects on the gel network were characterized by uniaxial compression tests, DSC, and rheology. Low ionic strength solutions caused the greatest degree of swelling (up to 400 %) and corresponded to a more brittle gel with a greater modulus and greater network enthalpy. Swelling slowed the release of glucose by decreasing the diffusion flux. The osmotic environment was found to produce different functional properties, and it is crucial to consider these changes in the design of formulations.


Subject(s)
Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Compressive Strength , Drug Carriers/chemistry , Elastic Modulus , Glucose/chemistry , Glucose/metabolism , Ions/chemistry , Rheology , Temperature , Thermodynamics
2.
Carbohydr Polym ; 218: 170-178, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31221318

ABSTRACT

Gelation of maltodextrin (DE 2) was examined over a range of temperatures to understand the behaviour within mixed-gel systems. Maltodextrin solutions were prepared at 95 °C and held at temperatures between 5 °C and 60 °C for four days. Bulk gel properties and the underlying microstructure were analysed using fracture strength, proton relaxation time, and differential scanning calorimetry (DSC). Holding at lower temperatures led to a greater gel strength with a brittle and crumbly texture. Analysis of the microstructure showed that gelation at 10 °C versus 60 °C produced a greater number of aggregates (melting enthalpy 14.5 J/g versus 3.4 J/g) and structuring of a higher melting entropy (45 mJ/g K versus 10 mJ/g K). A thermal hysteresis with signs of structure corresponding to both holding temperatures was also measured. Elevated temperature was hypothesized to decrease the amount of smaller molecular weight chains participating in aggregation by shifting from the helix to coil form.

SELECTION OF CITATIONS
SEARCH DETAIL
...