Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1429230, 2024.
Article in English | MEDLINE | ID: mdl-39314763

ABSTRACT

Mavacamten is a first-in-class cardiac myosin ATPase inhibitor, approved by the United States Food and Drug Administration for the treatment of hypertrophic cardiomyopathy with obstructive physiology (oHCM). Here, we present the real-world use of mavacamten in 50 patients with oHCM at a tertiary care referral center. In both our highlighted case and in our aggregate data, we report significant improvement in wall thickness, mitral regurgitation, left ventricular outflow tract obstruction and New York Heart Association symptom class. Moreover, in our center's experience, neither arrhythmia burden, nor contractility have worsened in the vast majority of patients: we note a clinically insignificant mean decrease in left ventricular ejection fraction (LVEF), with only two patients requiring temporary mavacamten discontinuance for LVEF < 50%. Adverse events were rare, unrelated to mavacamten itself, and seen solely in patients with disease too advanced to have been represented in clinical trials. Moreover, our multidisciplinary pathway enabled us to provide a large number of patients with a novel closely-monitored therapeutic within just a few months of commercial availability. These data lead us to conclude that mavacamten, as a first-in-class cardiac myosin inhibitor, is safe and efficacious in real-world settings.

2.
Lipids ; 41(6): 543-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16981432

ABSTRACT

The brain contains high levels of the long-chain n-3 FA DHA (22:6n-3), mainly in the gray matter and synaptosomes. Adequate intake of DHA is crucial for optimal nervous system function, particularly in infants. Supplementation of infant formulas with DHA at levels similar to human breast milk is recommended for biochemical and functional benefits to neonates. We generated transgenic mice that produce elevated levels of n-3 PUFA in their milk by expressing the Caenorhabditis elegans n-3 FA desaturase under the control of a lactation-induced goat beta-casein promoter. To examine the postnatal effects of consuming the n-3-enriched milk, we compared the growth and brain and plasma FA composition of mouse pups raised on milk from transgenic dams with those observed for pups raised on milk from nontransgenic dams. A significant decrease in arachidonic acid (ARA, 20:4n-6) and concomitant increases in n-3 PUFA were observed in the phospholipid fraction of transgenic mouse milk. The n-6:n-3 FA ratios were 4.7 and 34.5 for the transgenic and control milk phospholipid fractions, respectively. DHA and DPA (22:5n-6) comprised 15.1% and 2.8% of brain FA from weanling mice nursed on transgenic dams, as compared with 6.9% and 9.2% for weanling mice nursed on control dams, respectively. This transgenic mouse model offers a unique approach to disassociate the effects and fetal programming resulting from a high n-6:n-3 FA ratio gestational environment from the postnatal nutritional effects of providing milk with differing n-6:n-3 FA ratios.


Subject(s)
Brain Chemistry/drug effects , Docosahexaenoic Acids/analysis , Fatty Acids, Unsaturated/pharmacology , Lactation/genetics , Milk/chemistry , Animal Nutritional Physiological Phenomena , Animals , Animals, Suckling , Body Weight , Fatty Acids/blood , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated/blood , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL