Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328245

ABSTRACT

A midline shift (MLS) is an important clinical indicator for intracranial hemorrhage. In this study, we proposed a robust, fully automatic neural network-based model for the detection of MLS and compared it with MLSs drawn by clinicians; we also evaluated the clinical applications of the fully automatic model. We recruited 300 consecutive non-contrast CT scans consisting of 7269 slices in this study. Six different types of hemorrhage were included. The automatic detection of MLS was based on modified Keypoint R-CNN with keypoint detection followed by training on the ResNet-FPN-50 backbone. The results were further compared with manually drawn outcomes and manually defined keypoint calculations. Clinical parameters, including Glasgow coma scale (GCS), Glasgow outcome scale (GOS), and 30-day mortality, were also analyzed. The mean absolute error for the automatic detection of an MLS was 0.936 mm compared with the ground truth. The interclass correlation was 0.9899 between the automatic method and MLS drawn by different clinicians. There was high sensitivity and specificity in the detection of MLS at 2 mm (91.7%, 80%) and 5 mm (87.5%, 96.7%) and MLSs greater than 10 mm (85.7%, 97.7%). MLS showed a significant association with initial poor GCS and GCS on day 7 and was inversely correlated with poor 30-day GOS (p < 0.001). In conclusion, automatic detection and calculation of MLS can provide an accurate, robust method for MLS measurement that is clinically comparable to the manually drawn method.

2.
J Clin Med ; 10(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34640449

ABSTRACT

BACKGROUND: The performance of chest radiography-based age and sex prediction has not been well validated. We used a deep learning model to predict the age and sex of healthy adults based on chest radiographs (CXRs). METHODS: In this retrospective study, 66,643 CXRs of 47,060 healthy adults were used for model training and testing. In total, 47,060 individuals (mean age ± standard deviation, 38.7 ± 11.9 years; 22,144 males) were included. By using chronological ages as references, mean absolute error (MAE), root mean square error (RMSE), and Pearson's correlation coefficient were used to assess the model performance. Summarized class activation maps were used to highlight the activated anatomical regions. The area under the curve (AUC) was used to examine the validity for sex prediction. RESULTS: When model predictions were compared with the chronological ages, the MAE was 2.1 years, RMSE was 2.8 years, and Pearson's correlation coefficient was 0.97 (p < 0.001). Cervical, thoracic spines, first ribs, aortic arch, heart, rib cage, and soft tissue of thorax and flank seemed to be the most crucial activated regions in the age prediction model. The sex prediction model demonstrated an AUC of >0.99. CONCLUSION: Deep learning can accurately estimate age and sex based on CXRs.

SELECTION OF CITATIONS
SEARCH DETAIL
...