Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Int J Radiat Oncol Biol Phys ; 110(5): 1451-1465, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33662459

ABSTRACT

PURPOSE: The main objective of the present study was to integrate 18F-FDG-PET/CT radiomics with multiblock discriminant analysis for predicting circulating tumor cells (CTCs) in early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic body radiation therapy (SBRT). METHODS: Fifty-six patients with stage I NSCLC treated with SBRT underwent 18F-FDG-PET/CT imaging pre-SBRT and post-SBRT (median, 5 months; range, 3-10 months). CTCs were assessed via a telomerase-based assay before and within 3 months after SBRT and dichotomized at 5 and 1.3 CTCs/mL. Pre-SBRT, post-SBRT, and delta PET/CT radiomics features (n = 1548 × 3/1562 × 3) were extracted from gross tumor volume. Seven feature blocks were constructed including clinical parameters (n = 12). Multiblock data integration was performed using block sparse partial least squares-discriminant analysis (sPLS-DA) referred to as Data Integration Analysis for Biomarker Discovery Using Latent Components (DIABLO) for identifying key signatures by maximizing common information between different feature blocks while discriminating CTC levels. Optimal input blocks were identified using a pairwise combination method. DIABLO performance for predicting pre-SBRT and post-SBRT CTCs was evaluated using combined AUC (area under the curve, averaged across different blocks) analysis with 20 × 5-fold cross-validation (CV) and compared with that of concatenation-based sPLS-DA that consisted of combining all features into 1 block. CV prediction scores between 1 class versus the other were compared using the Wilcoxon rank sum test. RESULTS: For predicting pre-SBRT CTCs, DIABLO achieved the best performance with combined pre-SBRT PET radiomics and clinical feature blocks, showing CV AUC of 0.875 (P = .009). For predicting post-SBRT CTCs, DIABLO achieved the best performance with combined post-SBRT CT and delta CT radiomics feature blocks, showing CV AUCs of 0.883 (P = .001). In contrast, all single-block sPLS-DA models could not attain CV AUCs higher than 0.7. CONCLUSIONS: Multiblock integration with discriminant analysis of 18F-FDG-PET/CT radiomics has the potential for predicting pre-SBRT and post-SBRT CTCs. Radiomics and CTC analysis may complement and together help guide the subsequent management of patients with ES-NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/blood , Lung Neoplasms/radiotherapy , Neoplastic Cells, Circulating , Positron Emission Tomography Computed Tomography , Aged , Aged, 80 and over , Area Under Curve , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/pathology , Discriminant Analysis , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Prospective Studies , Radiopharmaceuticals , Statistics, Nonparametric , Tumor Burden
2.
Semin Radiat Oncol ; 31(2): 149-154, 2021 04.
Article in English | MEDLINE | ID: mdl-33610272

ABSTRACT

Recent treatment advances have improved outcomes for patients with non-small cell lung cancer (NSCLC), often utilizing tumor molecular characterization to identify targetable mutations. This is further enhanced by advancements in "liquid biopsies", using peripheral blood for noninvasive, serial sampling of tumor biology. While tumor genomic alterations have established therapeutic implications in metastatic NSCLC, research is also ongoing to develop applications for tissue and liquid biomarkers in earlier stage disease, such as patients treated with radiation for early stage or locoregional NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Mutation , Prognosis
3.
Int J Radiat Oncol Biol Phys ; 109(5): 1647-1656, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33333202

ABSTRACT

PURPOSE: To predict overall survival of patients receiving stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (ES-NSCLC), we developed a radiomic model that integrates risk of death estimates and changes based on pre- and posttreatment computed tomography (CT) scans. We hypothesize this innovation will improve our ability to stratify patients into various oncologic outcomes with greater accuracy. METHODS AND MATERIALS: Two cohorts of patients with ES-NSCLC uniformly treated with SBRT (a median dose of 50 Gy in 4-5 fractions) were studied. Prediction models were built on a discovery cohort of 100 patients with treatment planning CT scans, and then were applied to a separate validation cohort of 60 patients with pre- and posttreatment CT scans for evaluating their performance. RESULTS: Prediction models achieved a c-index up to 0.734 in predicting survival outcomes of the validation cohort. The integration of the pretreatment risk of survival measures (risk-high vs risk-low) and changes (risk-increase vs risk-decrease) in risk of survival measures between the pretreatment and posttreatment scans further stratified the patients into 4 subgroups (risk: high, increase; risk: high, decrease; risk: low, increase; risk: low, decrease) with significant difference (χ2 = 18.549, P = .0003, log-rank test). There was also a significant difference between the risk-increase and risk-decrease groups (χ2 = 6.80, P = .0091, log-rank test). In addition, a significant difference (χ2 = 7.493, P = .0062, log-rank test) was observed between the risk-high and risk-low groups obtained based on the pretreatment risk of survival measures. CONCLUSION: The integration of risk of survival measures estimated from pre- and posttreatment CT scans can help differentiate patients with good expected survival from those who will do more poorly following SBRT. The analysis of these radiomics-based longitudinal risk measures may help identify patients with early-stage NSCLC who will benefit from adjuvant treatment after lung SBRT, such as immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/mortality , Radiosurgery/methods , Tomography, X-Ray Computed , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cohort Studies , Dose Fractionation, Radiation , Female , Forecasting/methods , Humans , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Male , Models, Theoretical , Postoperative Care , Preoperative Care , Prognosis , Radiosurgery/mortality , Treatment Outcome
4.
Clin Cancer Res ; 26(10): 2372-2380, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31969332

ABSTRACT

PURPOSE: Although stereotactic body radiotherapy (SBRT) is effective in early-stage non-small cell lung cancer (NSCLC), approximately 10%-15% of patients will fail regionally and 20%-25% distantly. We evaluate a novel circulating tumor cell (CTC) assay as a prognostic marker for increased risk of recurrence following SBRT. EXPERIMENTAL DESIGN: Ninety-two subjects (median age, 71 years) with T1a (64%), T1b (23%), or T2a (13%) stage I NSCLC treated with SBRT were prospectively enrolled. CTCs were enumerated by utilizing a GFP-expressing adenoviral probe that detects elevated telomerase activity in cancer cells. Samples were obtained before, during, and serially up to 24 months after treatment. SBRT was delivered to a median dose of 50 Gy (range, 40-60 Gy), mostly commonly in four to five fractions (92%). RESULTS: Thirty-eight of 92 subjects (41%) had a positive CTC test prior to SBRT. A cutoff of ≥5 CTCs/mL before treatment defined favorable (n = 78) and unfavorable (n = 14) prognostic groups. Increased risk of nodal (P = 0.04) and distant (P = 0.03) failure was observed in the unfavorable group. Within 3 months following SBRT, CTCs continued to be detected in 10 of 35 (29%) subjects. Persistent detection of CTCs was associated with increased risk of distant failure (P = 0.04) and trended toward increased regional (P = 0.08) and local failure (P = 0.16). CONCLUSIONS: Higher pretreatment CTCs and persistence of CTCs posttreatment is significantly associated with increased risk of recurrence outside the targeted treatment site. This suggests that CTC analysis may potentially identify patients at higher risk for regional or distant recurrences and who may benefit from either systemic therapy and/or timely locoregional salvage treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Neoplasm Recurrence, Local/pathology , Neoplastic Cells, Circulating/pathology , Radiosurgery/methods , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/surgery , Disease Progression , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/surgery , Male , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/surgery , Neoplasm Staging , Retrospective Studies , Survival Rate , Telomerase/blood , Treatment Outcome
5.
Clin Lung Cancer ; 20(5): 384-390.e2, 2019 09.
Article in English | MEDLINE | ID: mdl-31221522

ABSTRACT

BACKGROUND: Assays to identify circulating tumor cells (CTCs) might allow for noninvasive and sequential monitoring of lung cancer. We investigated whether serial CTC analysis could complement conventional imaging for detecting recurrences after treatment in patients with locally advanced non-small-cell lung cancer (LA-NSCLC). PATIENTS AND METHODS: Patients with LA-NSCLC (stage II-III) who definitively received concurrent chemoradiation were prospectively enrolled, with CTCs from peripheral blood samples identified using an adenoviral probe that detects elevated telomerase activity present in nearly all lung cancer cells. A "detectable" CTC level was defined as 1.3 green flourescent protein-positive cells per milliliter of collected blood. Samples were obtained before, during (at weeks 2, 4, and 6), and after treatment (post-radiation therapy [RT]; at months 1, 3, 6, 12, 18, and 24). RESULTS: Forty-eight patients were enrolled. At a median follow-up of 10.9 months, 22 (46%) patients had disease recurrence at a median time of 7.6 months post-RT (range, 1.3-32.0 months). Of the 20 of 22 patients for whom post-RT samples were obtained, 15 (75%) had an increase in CTC counts post-RT. In 10 of these 15 patients, CTCs were undetectable on initial post-RT draw but were then detected again before radiographic detection of recurrence, with a median lead time of 6.2 months and mean lead time of 6.1 months (range, 0.1-12.0 months) between CTC count increase and radiographic evidence of recurrence. One patient with an early recurrence (4.7 months) had persistently elevated detectable CTC levels during and after treatment. CONCLUSION: These results indicate that longitudinal CTC monitoring in patients with LA-NSCLC treated with chemoradiation is feasible, and that detectable CTC levels in many patients meaningfully precede radiologic evidence of disease recurrence.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Cell Count/methods , Lung Neoplasms/diagnosis , Neoplastic Cells, Circulating/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Chemoradiotherapy , Feasibility Studies , Female , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging
6.
Cancer Res ; 78(23): 6632-6642, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30322863

ABSTRACT

: Circulating tumor cells (CTC) are known to be present in the blood of patients with glioblastoma (GBM). Here we report that GBM-derived CTC possess a cancer stem cell (CSC)-like phenotype and contribute to local tumorigenesis and recurrence by the process of self-seeding. Genetic probes showed that mouse GBM-derived CTC exhibited Sox2/ETn transcriptional activation and expressed glioma CSC markers, consistent with robust expression of stemness-associated genes including SOX2, OCT4, and NANOG in human GBM patient-derived samples containing CTC. A transgenic mouse model demonstrated that CTC returned to the primary tumor and generated new tumors with enhanced tumorigenic capacity. These CTCs were resistant to radiotherapy and chemotherapy and to circulation stress-induced cell apoptosis. Single-cell RNA-seq analysis revealed that Wnt activation induced stemness and chemoresistance in CTC. Collectively, these findings identify GBM-derived CTC as CSC-like cells and suggest that targeting Wnt may offer therapeutic opportunities for eliminating these treatment-refractory cells in GBM. SIGNIFICANCE: These findings identify CTCs as an alternative source for in situ tumor invasion and recurrence through local micrometastasis, warranting eradication of systemic "out-of-tumor" CTCs as a promising new therapeutic opportunity for GBM.


Subject(s)
Glioma/metabolism , Glioma/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Stem Cells/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Drug Resistance, Neoplasm , Female , Humans , Immunophenotyping , Male , Mice , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phenotype , Stress, Physiological , Wnt Proteins/metabolism
7.
Int J Radiat Oncol Biol Phys ; 102(3): 536-542, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30244877

ABSTRACT

PURPOSE: In patients treated with stereotactic body radiation therapy (SBRT) for presumed early stage non-small cell lung cancer (NSCLC), detection and monitoring of circulating tumor cells (CTCs) may be useful for assessing treatment response safely and noninvasively. No published reports of CTC trends in this patient population exist to date. METHODS AND MATERIALS: Patients with clinically diagnosed stage I NSCLC treated with SBRT were eligible for this institutional review board-approved prospective clinical trial. Peripheral blood samples were assayed for CTCs via a green fluorescent protein-expressing adenoviral probe. CTC positivity was defined as 1.3 green fluorescent protein-positive cells/mL of collected blood. Samples were obtained before (pre-radiation therapy [RT]), during, and after SBRT (post-RT; months 1, 3, 6, 12, 18, and 24). SBRT was delivered in ≤5 fractions (median dose of 50 Gy in 12.5 Gy fractions) to a biological equivalent dose of ≥100 Gy in all cases. RESULTS: Forty-eight consecutive patients (T1a [73%], T1b [21%], and T2a [6%]) were enrolled. Median follow-up was 14.2 months. Twenty patients (42%) had a positive CTC level pre-RT, with a median CTC count of 4.2 CTCs per mL (interquartile range [IQR], 2.2-18.7). Of these 20 patients, 17 had evaluable post-RT CTC evaluations showing reduced CTC counts at 1 month (median, 0.2; IQR, 0.1-0.8) and 3 months (median, 0.6; IQR, 0-1.1). Three of these 17 patients experienced disease progression at a median of 19.9 months; all 3 experienced ≥1 positive post-RT CTC test predating clinical progression by a median of 16 months (range, 2-17 months). In contrast, among patients presenting with CTC-detectable disease and for whom all post-RT CTC tests were negative, none experienced recurrence or progression. CONCLUSIONS: CTC monitoring after SBRT for presumed early stage NSCLC may give lead-time notice of disease recurrence or progression. Conversely, negative CTC counts after treatment may provide reassurance of disease control. CTC analysis is thus potentially useful in enhancing clinical diagnosis and follow-up in this population.


Subject(s)
Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/blood , Lung Neoplasms/radiotherapy , Neoplastic Cells, Circulating , Radiosurgery , Aged , Aged, 80 and over , Disease Progression , Dose Fractionation, Radiation , Female , Fluorescent Dyes/chemistry , Follow-Up Studies , Green Fluorescent Proteins/chemistry , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Pilot Projects , Prospective Studies , Recurrence , Telomerase/blood
8.
JCI Insight ; 3(3)2018 02 08.
Article in English | MEDLINE | ID: mdl-29415883

ABSTRACT

Cancer stem cells (CSCs) - known to be resistant to genotoxic radiation and chemotherapy - are fundamental to therapy failure and cancer relapse. Here, we reveal that glioma CSCs are hypersensitive to radiation, but a temporal DNA repair mechanism converts the intrinsic sensitivity to genomic instability and treatment resistance. Transcriptome analysis identifies DNA-dependent protein kinase (DNA-PK) as a predominant DNA repair enzyme in CSCs. Notably, DNA-PK activity is suppressed after irradiation when ROS induce the dissociation of DNA-PKcs with Ku70/80, resulting in delayed DNA repair and radiosensitivity; subsequently, after ROS clearance, the accumulated DNA damage and robust activation of DNA-PK induce genomic instability, facilitated by Rad50-mediated cell-cycle arrest, leading to enhanced malignancy, CSC overgrowth, and radioresistance. Finally, we show a requisite in vivo role for DNA-PK in CSC-mediated radioresistance and glioma progression. These findings identify a time-sensitive mechanism controlling CSC resistance to DNA-damaging treatments and suggest DNA-PK/Rad50 as promising targets for CSC eradication.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Genomic Instability/radiation effects , Glioma/radiotherapy , Neoplastic Stem Cells/radiation effects , Nuclear Proteins/metabolism , Radiation Tolerance/genetics , Acid Anhydride Hydrolases , Animals , Cell Line, Tumor , DNA Damage/radiation effects , DNA Repair , DNA Repair Enzymes/metabolism , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/radiation effects , Glioma/genetics , Humans , Male , Mice , Neoplastic Stem Cells/metabolism , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays
9.
Oncologist ; 21(1): 84-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26614709

ABSTRACT

UNLABELLED: : Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and messenger RNA (mRNA), collectively termed circulating tumor products (CTPs), represent areas of immense interest from scientists' and clinicians' perspectives. In melanoma, CTP analysis may have clinical utility in many areas, from screening and diagnosis to clinical decision-making aids, as surveillance biomarkers or sources of real-time genetic or molecular characterization. In addition, CTP analysis can be useful in the discovery of new biomarkers, patterns of treatment resistance, and mechanisms of metastasis development. Here, we compare and contrast CTCs, ctDNA, and mRNA, review the extent of translational evidence to date, and discuss how future studies involving both scientists and clinicians can help to further develop this tool for the benefit of melanoma patients. IMPLICATIONS FOR PRACTICE: Scientific advancement has enabled the rapid development of tools to analyze circulating tumor cells, tumor DNA, and messenger RNA, collectively termed circulating tumor products (CTPs). A variety of techniques have emerged to detect and characterize melanoma CTPs; however, only a fraction has been applied to human subjects. This review summarizes the available human data that investigate clinical utility of CTP in cancer screening, melanoma diagnosis, prognosis, prediction, and genetic or molecular characterization. It provides a rationale for how CTPs may be useful for future research and discusses how clinicians can be involved in developing this exciting new technology.


Subject(s)
Biomarkers, Tumor/blood , DNA, Neoplasm/blood , Melanoma/blood , RNA, Messenger/blood , Humans , Melanoma/genetics , Melanoma/pathology , Neoplastic Cells, Circulating/pathology , Prognosis
10.
PLoS One ; 10(3): e0123376, 2015.
Article in English | MEDLINE | ID: mdl-25807549

ABSTRACT

BACKGROUND: Circulating tumor cell (CTC) detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs. METHODS: The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status. RESULTS: The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4%) and specificity of 99.9% (95%CI 99.8-99.9%). In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors. CONCLUSIONS: To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.


Subject(s)
Melanoma/pathology , Neoplastic Cells, Circulating/metabolism , Adenoviridae/genetics , Adult , Aged , Area Under Curve , Cell Line, Tumor , Female , Fluorescent Antibody Technique , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Linear Models , Male , Melanoma/metabolism , Middle Aged , Mutation , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Pilot Projects , Proto-Oncogene Proteins B-raf/genetics , ROC Curve , Telomerase/metabolism
11.
Cancer ; 121(1): 139-49, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25241991

ABSTRACT

BACKGROUND: Assays identifying circulating tumor cells (CTCs) allow noninvasive and sequential monitoring of the status of primary or metastatic tumors, potentially yielding clinically useful information. However, to the authors' knowledge, the effect of radiation therapy (RT) on CTCs in patients with non-small cell lung cancer (NSCLC) has not been previously explored. METHODS: This report describes results from a pilot study of 30 patients with NSCLC who received RT. Peripheral blood samples obtained from these patients were assayed for CTCs using an assay that identified live cells using an adenoviral probe that detected the elevated telomerase activity present in almost all cancer cells, but not in normal cells, and the validity of the assay was confirmed with secondary tumor-specific markers. Patients were assayed before initiation of RT (pre-RT), during the RT course, and/or after the completion of RT (post-RT). RESULTS: The assay successfully detected CTCs in the majority of patients, including 65% of patients before the start of RT, and in patients with both epidermal growth factor receptor wild-type and mutation-positive tumors. The median CTC counts in patients before RT was 9.1 CTCs per mL (range, undetectable to 571 CTCs per mL) and was significantly higher than the average post-RT count of 0.6 CTCs per mL (range, undetectable to 1.8 CTCs per mL; P<.001). Sequential CTC counts were available in a subset of patients and demonstrated decreases after RT, except for 1 patient who subsequently developed distant failure. CONCLUSIONS: The current pilot data suggest that CTC counts appear to reflect response to RT in patients with localized NSCLC. On the basis of these promising results, the authors have launched a more comprehensive and detailed clinical trial.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Lung Neoplasms/diagnosis , Neoplastic Cells, Circulating/metabolism , Telomerase/metabolism , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/radiotherapy , Male , Middle Aged , Pilot Projects , Telomerase/blood , Treatment Outcome
12.
Cancer Biol Ther ; 15(6): 683-7, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24618718

ABSTRACT

BACKGROUND: Muscle invasive bladder carcinoma is an often lethal disease that requires aggressive treatment. Improved assays would contribute to better risk prediction and clinical management of this disease. A telomerase-based assay to detect circulating tumor cells (CTCs) may usefully fulfill this role. METHODS: Two patients (C1 and C2) were enrolled onto an IRB-approved bladder biomarker study before initiating post-operative radiation therapy (RT) for muscle invasive bladder carcinoma. Blood samples were taken at predefined intervals: before, during, and after RT and then retrospectively correlated with imaging studies and disease course. RESULTS: C1 began RT for positive resection margins on surgical pathology, at which time CTCs were undetectable and pelvic imaging demonstrated no evidence of disease. However, following the completion of treatment, the patient's CTC count was found to have increased to 202 CTCs/mL, and MRI demonstrated new abdominal and pelvic masses consistent with progressive disease. C1 ultimately died of disease with distant and local failure. Conversely, C2 was found to have 632 CTCs/mL before the initiation of RT for positive surgical margins, although imaging demonstrated no visible masses. At the conclusion of RT, repeat imaging showed changes that were indeterminate for either tumor recurrence or post-radiation effects. However, the patient's CTC count had dropped to 184 CTCs/mL. Furthermore, a second follow-up assay performed 6 months later revealed no detectable CTCs and repeat imaging showed complete resolution of worrisome imaging changes, thus excluding tumor progression. CONCLUSIONS: To our knowledge this is the first report of a telomerase-based assay to identify CTCs in bladder cancer patients. Further studies are required to fully determine the ultimate clinical utility of this assay. However, the two patient vignettes described here illustrate how serial CTC assays may track the disease course and inform the management of bladder cancer patients undergoing adjuvant RT and potentially chemotherapy.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Transitional Cell/diagnosis , Neoplastic Cells, Circulating/metabolism , Telomerase/metabolism , Urinary Bladder Neoplasms/diagnosis , Aged , Carcinoma, Transitional Cell/enzymology , Carcinoma, Transitional Cell/therapy , Enzyme Assays , Fatal Outcome , Female , Humans , Male , Middle Aged , Radiotherapy, Adjuvant , Treatment Outcome , Urinary Bladder Neoplasms/enzymology , Urinary Bladder Neoplasms/therapy
13.
Cancer Res ; 74(8): 2152-9, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24525740

ABSTRACT

Blood tests to detect circulating tumor cells (CTC) offer great potential to monitor disease status, gauge prognosis, and guide treatment decisions for patients with cancer. For patients with brain tumors, such as aggressive glioblastoma multiforme, CTC assays are needed that do not rely on expression of cancer cell surface biomarkers like epithelial cell adhesion molecules that brain tumors tend to lack. Here, we describe a strategy to detect CTC based on telomerase activity, which is elevated in nearly all tumor cells but not normal cells. This strategy uses an adenoviral detection system that is shown to successfully detect CTC in patients with brain tumors. Clinical data suggest that this assay might assist interpretation of treatment response in patients receiving radiotherapy, for example, to differentiate pseudoprogression from true tumor progression. These results support further development of this assay as a generalized method to detect CTC in patients with cancer.


Subject(s)
Brain Neoplasms/blood , Brain Neoplasms/pathology , Glioma/blood , Glioma/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Telomerase/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Brain Neoplasms/enzymology , Female , Glioma/metabolism , Heterografts , Humans , Male , Mice , Promoter Regions, Genetic , Telomerase/analysis , Telomerase/genetics , Xenograft Model Antitumor Assays
14.
PLoS One ; 8(4): e62425, 2013.
Article in English | MEDLINE | ID: mdl-23638079

ABSTRACT

Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Gold/therapeutic use , Nanoparticles/therapeutic use , Animals , Brain/drug effects , Brain/pathology , Brain/radiation effects , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Glioblastoma/pathology , Mice , Mice, Nude , Nanoparticles/ultrastructure
15.
Oncotarget ; 4(1): 64-79, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23296073

ABSTRACT

Glioblastoma multiforme (GBM) is a common, usually lethal disease with a median survival of only ~15 months. It has proven resistant in clinical trials to chemotherapeutic agents such as paclitaxel that are highly effective in vitro, presumably because of impaired drug delivery across the tumor's blood-brain barrier (BBB). In an effort to increase paclitaxel delivery across the tumor BBB, we linked the drug to a novel filomicelle nanocarrier made with biodegradable poly(ethylene-glycol)-block-poly(ε-caprolactone-r-D,L-lactide) and used precisely collimated radiation therapy (RT) to disrupt the tumor BBB's permeability in an orthotopic mouse model of GBM. Using a non-invasive bioluminescent imaging technique to assess tumor burden and response to therapy in our model, we demonstrated that the drug-loaded nanocarrier (DLN) alone was ineffective against stereotactically implanted intracranial tumors yet was highly effective against GBM cells in culture and in tumors implanted into the flanks of mice. When targeted cranial RT was used to modulate the tumor BBB, the paclitaxel-loaded nanocarriers became effective against the intracranial tumors. Focused cranial RT improved DLN delivery into the intracranial tumors, significantly improving therapeutic outcomes. Tumor growth was delayed or halted, and survival was extended by >50% (p less than 0.05) compared to the results obtained with either RT or the DLN alone. Combinations of RT and chemotherapeutic agents linked to nanocarriers would appear to be an area for future investigations that could enhance outcomes in the treatment of human GBM.


Subject(s)
Brain Neoplasms/therapy , Drug Delivery Systems/methods , Glioblastoma/therapy , Paclitaxel/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/radiation effects , Brain Neoplasms/pathology , Cell Line, Tumor , Chemoradiotherapy , Drug Carriers/chemistry , Glioblastoma/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Nude , Micelles , Microscopy, Fluorescence , Nanostructures/chemistry , Paclitaxel/chemistry , Polymers/chemistry , Treatment Outcome , Xenograft Model Antitumor Assays
16.
Int J Radiat Oncol Biol Phys ; 85(4): 924-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-22929862

ABSTRACT

PURPOSE: Between 2000 and 2010, the American Society for Radiation Oncology (ASTRO) awarded 22 Junior Faculty Career Development Awards (JFA) totaling $4.4 million. This study aimed to evaluate the impact of these awards on the grantees' career development, including current position, publications, and subsequent independent grant funding. METHODS: Each awardee was requested via email and telephone to provide an updated curriculum vitae, a National Institutes of Health (NIH) biosketch, and information regarding current position of employment. Twenty-one of the 22 JFA recipients complied. Reported grant funding was extracted from each candidate's CV, and the amounts of NIH grants obtained were confirmed via NIH REPORTER. Reported publications were confirmed via PubMed. RESULTS: All survey respondents (21 of 21) have remained in academic positions. Subsequent aggregate grant funding totaled more than $25 million (range, $0-$4.1 million), 5.9 times the initial investment. NIH grant funding totaled almost $15 million, 3 times the initial investment. Awardees have published an average of 34.6 publications (range, 0-123) for an overall rate of 4.5 papers/year (range, 1-11). CONCLUSIONS: ASTRO JFAs over the past decade have been strongly associated with grantees remaining in academic positions, success in attracting private and NIH grants, and publication productivity. In an era of dwindling federal research funding, the support provided by the ASTRO JFA may be especially helpful to support the research careers of promising junior faculty members.


Subject(s)
Awards and Prizes , Financing, Organized/economics , Radiation Oncology , Societies, Medical , Staff Development , Career Mobility , Efficiency , Faculty, Medical/supply & distribution , Humans , National Institutes of Health (U.S.)/economics , Publishing/statistics & numerical data , Radiation Oncology/economics , Radiation Oncology/education , Radiation Oncology/statistics & numerical data , Research/economics , Research/statistics & numerical data , Societies, Medical/economics , Societies, Medical/statistics & numerical data , Staff Development/economics , Staff Development/statistics & numerical data , United States
17.
Transl Oncol ; 6(6): 722-31, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24466375

ABSTRACT

Radiation therapy (RT) is an integral component of the treatment of many sarcomas and relies on accurate targeting of tumor tissue. Despite conventional treatment planning and RT, local failure rates of 10% to 28% at 5 years have been reported for locally advanced, unresectable sarcomas, due in part to limitations in the cumulative RT dose that may be safely delivered. We describe studies of the potential usefulness of gold nanoparticles modified for durable systemic circulation (through polyethylene glycosylation; hereinafter "P-GNPs") as adjuvants for RT of sarcomas. In studies of two human sarcoma-derived cell lines, P-GNP in conjunction with RT caused increased unrepaired DNA damage, reflected by approximately 1.61-fold increase in γ-H2AX (histone phosphorylated on Ser(139)) foci density compared with RT alone. The combined RT and P-GNP also led to significantly reduced clonogenic survival of tumor cells, compared to RT alone, with dose-enhancement ratios of 1.08 to 1.16. In mice engrafted with human sarcoma tumor cells, the P-GNP selectively accumulated in the tumor and enabled durable imaging, potentially aiding radiosensitization as well as treatment planning. Mice pretreated with P-GNP before targeted RT of their tumors exhibited significantly improved tumor regression and overall survival, with long-term survival in one third of mice in this treatment group compared to none with RT only. Interestingly, prior RT of sarcoma tumors increased subsequent extravasation and in-tumor deposition of P-GNP. These results together suggest P-GNP may be integrated into the RT of sarcomas, potentially improving target imaging and radiosensitization of tumor while minimizing dose to normal tissues.

18.
Transl Cancer Res ; 2(4): 280-291, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-25429358

ABSTRACT

The potential of gold nanoparticles (GNPs) in therapeutic and diagnostic cancer applications is becoming increasingly recognized. These biologically compatible particles can be easily synthesized, tuned to different sizes, and functionalized by conjugation to various biologically useful materials. Efficient and specific delivery to tumor tissue can then be accomplished either by passive accumulation in leaky tumor vessels and tissue, or by directly targeting tumor-specific biomarkers. Tumor-localized GNPs can serve as both adjuvants for enhancing the efficacy of radiation therapy and also as contrast agents for various imaging modalities. In this review, we will discuss recent advancements and future potential in the application of GNP as both a radiosensitizer and an imaging contrast agent. Due to their versatility and biocompatibility, gold nanoparticles may represent a novel theranostic adjuvant for radiation applications in cancer management.

19.
J Vis Exp ; (67)2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23051742

ABSTRACT

Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments. This method is also well-tolerated by the animals with low perioperative morbidity and mortality.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Luminescent Measurements/methods , Neoplasm Transplantation/methods , Stereotaxic Techniques , Transplantation, Heterologous/methods , Animals , Brain Neoplasms/chemistry , Cell Line, Tumor , Glioblastoma/chemistry , Humans , Mice , Mice, Nude
20.
Transl Oncol ; 5(4): 230-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22937174

ABSTRACT

Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.

SELECTION OF CITATIONS
SEARCH DETAIL
...