Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nature ; 629(8014): 1109-1117, 2024 May.
Article in English | MEDLINE | ID: mdl-38750359

ABSTRACT

Working memory, the process through which information is transiently maintained and manipulated over a brief period, is essential for most cognitive functions1-4. However, the mechanisms underlying the generation and evolution of working-memory neuronal representations at the population level over long timescales remain unclear. Here, to identify these mechanisms, we trained head-fixed mice to perform an olfactory delayed-association task in which the mice made decisions depending on the sequential identity of two odours separated by a 5 s delay. Optogenetic inhibition of secondary motor neurons during the late-delay and choice epochs strongly impaired the task performance of the mice. Mesoscopic calcium imaging of large neuronal populations of the secondary motor cortex (M2), retrosplenial cortex (RSA) and primary motor cortex (M1) showed that many late-delay-epoch-selective neurons emerged in M2 as the mice learned the task. Working-memory late-delay decoding accuracy substantially improved in the M2, but not in the M1 or RSA, as the mice became experts. During the early expert phase, working-memory representations during the late-delay epoch drifted across days, while the stimulus and choice representations stabilized. In contrast to single-plane layer 2/3 (L2/3) imaging, simultaneous volumetric calcium imaging of up to 73,307 M2 neurons, which included superficial L5 neurons, also revealed stabilization of late-delay working-memory representations with continued practice. Thus, delay- and choice-related activities that are essential for working-memory performance drift during learning and stabilize only after several days of expert performance.


Subject(s)
Memory Consolidation , Memory, Short-Term , Practice, Psychological , Animals , Female , Male , Mice , Calcium/metabolism , Choice Behavior/physiology , Memory Consolidation/physiology , Memory, Short-Term/physiology , Mice, Inbred C57BL , Motor Cortex/physiology , Motor Cortex/cytology , Motor Neurons/physiology , Odorants/analysis , Optogenetics , Psychomotor Performance/physiology , Smell/physiology , Time Factors
2.
Nat Commun ; 15(1): 2111, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454000

ABSTRACT

Investigative exploration and foraging leading to food consumption have vital importance, but are not well-understood. Since GABAergic inputs to the lateral and ventrolateral periaqueductal gray (l/vlPAG) control such behaviors, we dissected the role of vgat-expressing GABAergic l/vlPAG cells in exploration, foraging and hunting. Here, we show that in mice vgat l/vlPAG cells encode approach to food and consumption of both live prey and non-prey foods. The activity of these cells is necessary and sufficient for inducing food-seeking leading to subsequent consumption. Activation of vgat l/vlPAG cells produces exploratory foraging and compulsive eating without altering defensive behaviors. Moreover, l/vlPAG vgat cells are bidirectionally interconnected to several feeding, exploration and investigation nodes, including the zona incerta. Remarkably, the vgat l/vlPAG projection to the zona incerta bidirectionally controls approach towards food leading to consumption. These data indicate the PAG is not only a final downstream target of top-down exploration and foraging-related inputs, but that it also influences these behaviors through a bottom-up pathway.


Subject(s)
Periaqueductal Gray , Mice , Animals , Periaqueductal Gray/physiology
3.
bioRxiv ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37502862

ABSTRACT

Decision-making emerges from distributed computations across multiple brain areas, but it is unclear why the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) to form optimal representations of task inputs. These optimal representations are sufficient to perform the task well, but minimal so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.

4.
Nat Commun ; 14(1): 2997, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225710

ABSTRACT

The neurophysiological mechanisms in the human amygdala that underlie post-traumatic stress disorder (PTSD) remain poorly understood. In a first-of-its-kind pilot study, we recorded intracranial electroencephalographic data longitudinally (over one year) in two male individuals with amygdala electrodes implanted for the management of treatment-resistant PTSD (TR-PTSD) under clinical trial NCT04152993. To determine electrophysiological signatures related to emotionally aversive and clinically relevant states (trial primary endpoint), we characterized neural activity during unpleasant portions of three separate paradigms (negative emotional image viewing, listening to recordings of participant-specific trauma-related memories, and at-home-periods of symptom exacerbation). We found selective increases in amygdala theta (5-9 Hz) bandpower across all three negative experiences. Subsequent use of elevations in low-frequency amygdala bandpower as a trigger for closed-loop neuromodulation led to significant reductions in TR-PTSD symptoms (trial secondary endpoint) following one year of treatment as well as reductions in aversive-related amygdala theta activity. Altogether, our findings provide early evidence that elevated amygdala theta activity across a range of negative-related behavioral states may be a promising target for future closed-loop neuromodulation therapies in PTSD.


Subject(s)
Gastropoda , Stress Disorders, Post-Traumatic , Humans , Male , Animals , Stress Disorders, Post-Traumatic/therapy , Pilot Projects , Emotions , Affect , Amygdala
5.
BMC Geriatr ; 22(1): 864, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36384461

ABSTRACT

BACKGROUND: There is currently no consensus as to a standardized tool for frailty measurement in any patient population. In the solid-organ transplantation population, routinely identifying and quantifying frailty in potential transplant candidates would support patients and the multidisciplinary team to make well-informed, individualized, management decisions. The aim of this scoping review was to synthesise the literature regarding frailty measurement in solid-organ transplant (SOT) candidates. METHODS: A search of four databases (Cochrane, Pubmed, EMBASE and CINAHL) yielded 3124 studies. 101 studies (including heart, kidney, liver, and lung transplant candidate populations) met the inclusion criteria. RESULTS: We found that studies used a wide range of frailty tools (N = 22), including four 'established' frailty tools. The most commonly used tools were the Fried Frailty Phenotype and the Liver Frailty Index. Frailty prevalence estimates for this middle-aged, predominantly male, population varied between 2.7% and 100%. In the SOT candidate population, frailty was found to be associated with a range of adverse outcomes, with most evidence for increased mortality (including post-transplant and wait-list mortality), post-operative complications and prolonged hospitalisation. There is currently insufficient data to compare the predictive validity of frailty tools in the SOT population. CONCLUSION: Overall, there is great variability in the approach to frailty measurement in this population. Preferably, a validated frailty measurement tool would be incorporated into SOT eligibility assessments internationally with a view to facilitating comparisons between patient sub-groups and national and international transplant services with the ultimate goal of improved patient care.


Subject(s)
Frailty , Organ Transplantation , Humans , Male , Female , Frailty/diagnosis , Frailty/epidemiology , Frailty/complications , Organ Transplantation/adverse effects , Waiting Lists , Postoperative Complications/epidemiology , Prevalence
6.
Sci Rep ; 12(1): 10310, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725588

ABSTRACT

The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.


Subject(s)
GABAergic Neurons , Interneurons , Animals , CA1 Region, Hippocampal/physiology , Female , GABAergic Neurons/physiology , Hippocampus/physiology , Interneurons/physiology , Male , Mice , Pyramidal Cells/physiology
7.
Elife ; 102021 09 01.
Article in English | MEDLINE | ID: mdl-34468312

ABSTRACT

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.


Subject(s)
Behavior, Animal , Conditioning, Psychological , Escape Reaction , Fear , Hypothalamus, Posterior/physiology , Periaqueductal Gray/physiology , Adult , Animals , Brain Mapping , Cholecystokinin/genetics , Cholecystokinin/metabolism , Female , Humans , Hypothalamus, Posterior/diagnostic imaging , Hypothalamus, Posterior/metabolism , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/physiology , Optogenetics , Periaqueductal Gray/diagnostic imaging , Periaqueductal Gray/metabolism , Photic Stimulation , Rats, Long-Evans , Time Factors , Video Recording , Visual Perception , Young Adult
8.
Entropy (Basel) ; 23(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34356463

ABSTRACT

We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the "redundant information". We show that existing definitions of the redundant information can be recast in terms of an optimization over a family of functions. In contrast to previous information decompositions, which can only be evaluated for discrete variables over small alphabets, we show that optimizing over functions enables the approximation of the redundant information for high-dimensional and continuous predictors. We demonstrate this on high-dimensional image classification and motor-neuroscience tasks.

9.
Elife ; 102021 05 06.
Article in English | MEDLINE | ID: mdl-33955356

ABSTRACT

Animals must balance needs to approach threats for risk assessment and to avoid danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents states associated with threat approach and avoidance. We identified a dPAG threatavoidance ensemble in mice that showed higher activity farther from threats such as the open arms of the elevated plus maze and a predator. These cells were also more active during threat avoidance behaviors such as escape and freezing, even though these behaviors have antagonistic motor output. Conversely, the threat approach ensemble was more active during risk assessment behaviors and near threats. Furthermore, unsupervised methods showed that avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach and avoidance states, providing a flexible mechanism to balance risk assessment and danger avoidance.


Subject(s)
Avoidance Learning , Periaqueductal Gray/physiology , Animals , Elevated Plus Maze Test , Male , Mice , Mice, Inbred C57BL
10.
J Neural Eng ; 18(4)2021 05 13.
Article in English | MEDLINE | ID: mdl-33978599

ABSTRACT

Objective.Brain-computer interfaces (BCIs) translate neural activity into control signals for assistive devices in order to help people with motor disabilities communicate effectively. In this work, we introduce a new BCI architecture that improves control of a BCI computer cursor to type on a virtual keyboard.Approach.Our BCI architecture incorporates an external artificial intelligence (AI) that beneficially augments the movement trajectories of the BCI. This AI-BCI leverages past user actions, at both long (100 s of seconds ago) and short (100 s of milliseconds ago) timescales, to modify the BCI's trajectories.Main results.We tested our AI-BCI in a closed-loop BCI simulator with nine human subjects performing a typing task. We demonstrate that our AI-BCI achieves: (1) categorically higher information communication rates, (2) quicker ballistic movements between targets, (3) improved precision control to 'dial in' on targets, and (4) more efficient movement trajectories. We further show that our AI-BCI increases performance across a wide control quality spectrum from poor to proficient control.Significance.This AI-BCI architecture, by increasing BCI performance across all key metrics evaluated, may increase the clinical viability of BCI systems.


Subject(s)
Brain-Computer Interfaces , Self-Help Devices , Artificial Intelligence , Computers , Electroencephalography , Humans , Movement , User-Computer Interface
11.
Neuron ; 109(11): 1848-1860.e8, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33861942

ABSTRACT

Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.


Subject(s)
Escape Reaction , Hypothalamus, Posterior/physiology , Periaqueductal Gray/physiology , Spatial Navigation , Thalamus/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Rats , Rats, Long-Evans
12.
J Neurosci ; 41(25): 5399-5420, 2021 06 23.
Article in English | MEDLINE | ID: mdl-33883203

ABSTRACT

The brainstem dorsal periaqueductal gray (dPAG) has been widely recognized as being a vital node orchestrating the responses to innate threats. Intriguingly, recent evidence also shows that the dPAG mediates defensive responses to fear conditioned contexts. However, it is unknown whether the dPAG displays independent or shared patterns of activation during exposure to innate and conditioned threats. It is also unclear how dPAG ensembles encode and predict diverse defensive behaviors. To address this question, we used miniaturized microscopes to obtain recordings of the same dPAG ensembles during exposure to a live predator and a fear conditioned context in male mice. dPAG ensembles encoded not only distance to threat, but also relevant features, such as predator speed and angular offset between mouse and threat. Furthermore, dPAG cells accurately encoded numerous defensive behaviors, including freezing, stretch-attend postures, and escape. Encoding of behaviors and of distance to threat occurred independently in dPAG cells. dPAG cells also displayed a shared representation to encode these behaviors and distance to threat across innate and conditioned threats. Last, we also show that escape could be predicted by dPAG activity several seconds in advance. Thus, dPAG activity dynamically tracks key kinematic and behavioral variables during exposure to threats, and exhibits similar patterns of activation during defensive behaviors elicited by innate or conditioned threats. These data indicate that a common pathway may be recruited by the dPAG during exposure to a wide variety of threat modalities.SIGNIFICANCE STATEMENT The dorsal periaqueductal gray (dPAG) is critical to generate defensive behaviors during encounters with threats of multiple modalities. Here we use longitudinal calcium transient recordings of dPAG ensembles in freely moving mice to show that this region uses shared patterns of activity to represent distance to an innate threat (a live predator) and a conditioned threat (a shock grid). We also show that dPAG neural activity can predict diverse defensive behaviors. These data indicate the dPAG uses conserved population-level activity patterns to encode and coordinate defensive behaviors during exposure to both innate and conditioned threats.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Periaqueductal Gray/physiology , Animals , Male , Mice , Mice, Inbred C57BL
14.
Nature ; 591(7851): 604-609, 2021 03.
Article in English | MEDLINE | ID: mdl-33473215

ABSTRACT

In dynamic environments, subjects often integrate multiple samples of a signal and combine them to reach a categorical judgment1. The process of deliberation can be described by a time-varying decision variable (DV), decoded from neural population activity, that predicts a subject's upcoming decision2. Within single trials, however, there are large moment-to-moment fluctuations in the DV, the behavioural significance of which is unclear. Here, using real-time, neural feedback control of stimulus duration, we show that within-trial DV fluctuations, decoded from motor cortex, are tightly linked to decision state in macaques, predicting behavioural choices substantially better than the condition-averaged DV or the visual stimulus alone. Furthermore, robust changes in DV sign have the statistical regularities expected from behavioural studies of changes of mind3. Probing the decision process on single trials with weak stimulus pulses, we find evidence for time-varying absorbing decision bounds, enabling us to distinguish between specific models of decision making.


Subject(s)
Decision Making/physiology , Models, Neurological , Animals , Choice Behavior/physiology , Discrimination, Psychological , Judgment , Macaca/physiology , Motion , Motion Perception , Photic Stimulation , Time Factors
15.
J Neurosci ; 40(43): 8329-8342, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32958567

ABSTRACT

Hippocampal CA1 place cell spatial maps are known to alter their firing properties in response to contextual fear conditioning, a process called "remapping." In the present study, we use chronic calcium imaging to examine remapping during fear retrieval and extinction of an inhibitory avoidance task in mice of both sexes over an extended period of time and with thousands of neurons. We demonstrate that hippocampal ensembles encode space at a finer scale following fear memory acquisition. This effect is strongest near the shock grid. We also characterize the long-term effects of shock on place cell ensemble stability, demonstrating that shock delivery induces several days of high fear and low between-session place field stability, followed by a new, stable spatial representation that appears after fear extinction. Finally, we identify a novel group of CA1 neurons that robustly encode freeze behavior independently from spatial location. Thus, following fear acquisition, hippocampal CA1 place cells sharpen their spatial tuning and dynamically change spatial encoding stability throughout fear learning and extinction.SIGNIFICANCE STATEMENT The hippocampus contains place cells that encode an animal's location. This spatial code updates, or remaps, in response to environmental change. It is known that contextual fear can induce such remapping; in the present study, we use chronic calcium imaging to examine inhibitory avoidance-induced remapping over an extended period of time and with thousands of neurons and demonstrate that hippocampal ensembles encode space at a finer scale following electric shock, an effect which is enhanced by threat proximity. We also identify a novel group of freeze behavior-activated neurons. These results suggest that, more than merely shuffling their spatial code following threat exposure, place cells enhance their spatial coding with the possible benefit of improved threat localization.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Hippocampus/physiology , Animals , Avoidance Learning , Behavior, Animal/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Calcium Signaling , Female , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology
17.
Cell Rep ; 32(6): 108006, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783934

ABSTRACT

In multiple cortical areas, including the motor cortex, neurons have similar firing rate statistics whether we observe or execute movements. These "congruent" neurons are hypothesized to support action understanding by participating in a neural circuit consistently activated in both observed and executed movements. We examined this hypothesis by analyzing neural population structure and dynamics between observed and executed movements. We find that observed and executed movements exhibit similar neural population covariation in a shared subspace capturing significant neural variance. Further, neural dynamics are more similar between observed and executed movements within the shared subspace than outside it. Finally, we find that this shared subspace has a heterogeneous composition of congruent and incongruent neurons. Together, these results argue that similar neural covariation and dynamics between observed and executed movements do not occur via activation of a subpopulation of congruent single neurons, but through consistent temporal activation of a heterogeneous neural population.


Subject(s)
Motor Cortex/physiology , Neurons/physiology , Animals , Macaca mulatta
18.
Nat Biomed Eng ; 4(10): 973-983, 2020 10.
Article in English | MEDLINE | ID: mdl-32719512

ABSTRACT

The large power requirement of current brain-machine interfaces is a major hindrance to their clinical translation. In basic behavioural tasks, the downsampled magnitude of the 300-1,000 Hz band of spiking activity can predict movement similarly to the threshold crossing rate (TCR) at 30 kilo-samples per second. However, the relationship between such a spiking-band power (SBP) and neural activity remains unclear, as does the capability of using the SBP to decode complicated behaviour. By using simulations of recordings of neural activity, here we show that the SBP is dominated by local single-unit spikes with spatial specificity comparable to or better than that of the TCR, and that the SBP correlates better with the firing rates of lower signal-to-noise-ratio units than the TCR. With non-human primates, in an online task involving the one-dimensional decoding of the movement of finger groups and in an offline two-dimensional cursor-control task, the SBP performed equally well or better than the TCR. The SBP may enhance the decoding performance of neural interfaces while enabling substantial cuts in power consumption.


Subject(s)
Brain-Computer Interfaces , Motor Cortex/physiology , Neurons/physiology , Animals , Fingers , Macaca mulatta , Male , Microelectrodes , Prostheses and Implants , Rats, Long-Evans , Signal-To-Noise Ratio
19.
IEEE Trans Biomed Eng ; 67(8): 2145-2158, 2020 08.
Article in English | MEDLINE | ID: mdl-31765302

ABSTRACT

Intracortical brain-machine interfaces (BMIs) transform neural activity into control signals to drive a prosthesis or communication device, such as a robotic arm or computer cursor. To be clinically viable, BMI decoders must achieve high accuracy and robustness. Optimizing these decoders is expensive, traditionally requiring animal or human experiments spanning months to years. This is because BMIs are closed-loop systems, where the user updates his or her motor commands in response to an imperfectly decoded output. Decoder optimization using previously collected "offline" data will therefore not capture this closed-loop response. An alternative approach to significantly accelerate decoder optimization is to use a closed-loop experimental simulator. A key component of this simulator is the neural encoder, which synthetically generates neural population activity from kinematics. Prior neural encoders do not model important features of neural population activity. To overcome these limitations, we use deep learning neural encoders. We find these models significantly outperform prior neural encoders in reproducing peri-stimulus time histograms (PSTHs) and neural population dynamics. We also find that deep learning neural encoders better match neural decoding results in offline data and closed-loop experimental data. We anticipate these deep-learning neural encoders will substantially improve simulators for BMIs, enabling faster evaluation, optimization, and characterization of BMI decoder algorithms.


Subject(s)
Brain-Computer Interfaces , Deep Learning , Motor Cortex , Algorithms , Animals , Humans , Macaca mulatta
20.
J Neurophysiol ; 122(6): 2504-2521, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31619125

ABSTRACT

Recurrent neural networks (RNNs) are increasingly being used to model complex cognitive and motor tasks performed by behaving animals. RNNs are trained to reproduce animal behavior while also capturing key statistics of empirically recorded neural activity. In this manner, the RNN can be viewed as an in silico circuit whose computational elements share similar motifs with the cortical area it is modeling. Furthermore, because the RNN's governing equations and parameters are fully known, they can be analyzed to propose hypotheses for how neural populations compute. In this context, we present important considerations when using RNNs to model motor behavior in a delayed reach task. First, by varying the network's nonlinear activation and rate regularization, we show that RNNs reproducing single-neuron firing rate motifs may not adequately capture important population motifs. Second, we find that even when RNNs reproduce key neurophysiological features on both the single neuron and population levels, they can do so through distinctly different dynamical mechanisms. To distinguish between these mechanisms, we show that an RNN consistent with a previously proposed dynamical mechanism is more robust to input noise. Finally, we show that these dynamics are sufficient for the RNN to generalize to tasks it was not trained on. Together, these results emphasize important considerations when using RNN models to probe neural dynamics.NEW & NOTEWORTHY Artificial neurons in a recurrent neural network (RNN) may resemble empirical single-unit activity but not adequately capture important features on the neural population level. Dynamics of RNNs can be visualized in low-dimensional projections to provide insight into the RNN's dynamical mechanism. RNNs trained in different ways may reproduce neurophysiological motifs but do so with distinctly different mechanisms. RNNs trained to only perform a delayed reach task can generalize to perform tasks where the target is switched or the target location is changed.


Subject(s)
Behavior, Animal , Motor Activity , Motor Cortex , Neural Networks, Computer , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...