Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 21(4): 397-404, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24632569

ABSTRACT

Crystallographic and solution studies have shown that IgE molecules are acutely bent in their Fc region. Crystal structures reveal the Cɛ2 domain pair folded back onto the Cɛ3-Cɛ4 domains, but is the molecule exclusively bent or can the Cɛ2 domains adopt extended conformations and even 'flip' from one side of the molecule to the other? We report the crystal structure of IgE-Fc captured in a fully extended, symmetrical conformation and show by molecular dynamics, calorimetry, stopped-flow kinetic, surface plasmon resonance (SPR) and Förster resonance energy transfer (FRET) analyses that the antibody can indeed adopt such extended conformations in solution. This diversity of conformational states available to IgE-Fc offers a new perspective on IgE function in allergen recognition, as part of the B-cell receptor and as a therapeutic target in allergic disease.


Subject(s)
Immunoglobulin E/physiology , B-Lymphocytes/immunology , Calorimetry , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Humans , Hypersensitivity/immunology , Immunoglobulin E/chemistry , Protein Structure, Tertiary , Receptors, IgE/chemistry , Surface Plasmon Resonance
2.
J Biol Chem ; 287(37): 31457-61, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22815482

ABSTRACT

IgE, the antibody that mediates allergic responses, acts as part of a self-regulating protein network. Its unique effector functions are controlled through interactions of its Fc region with two cellular receptors, FcεRI on mast cells and basophils and CD23 on B cells. IgE cross-linked by allergen triggers mast cell activation via FcεRI, whereas IgE-CD23 interactions control IgE expression levels. We have determined the CD23 binding site on IgE, using a combination of NMR chemical shift mapping and site-directed mutagenesis. We show that the CD23 and FcεRI interaction sites are at opposite ends of the Cε3 domain of IgE, but that receptor binding is mutually inhibitory, mediated by an allosteric mechanism. This prevents CD23-mediated cross-linking of IgE bound to FcεRI on mast cells and resulting antigen-independent anaphylaxis. The mutually inhibitory nature of receptor binding provides a degree of autonomy for the individual activities mediated by IgE-FcεRI and IgE-CD23 interactions.


Subject(s)
Basophils/metabolism , Immunoglobulin E/metabolism , Mast Cells/metabolism , Receptors, IgE/metabolism , Allosteric Regulation/immunology , Basophils/cytology , Basophils/immunology , Cell Line , Humans , Immunoglobulin E/genetics , Immunoglobulin E/immunology , Mast Cells/cytology , Mast Cells/immunology , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Peptide Mapping/methods , Protein Binding , Protein Structure, Tertiary , Receptors, IgE/genetics , Receptors, IgE/immunology
3.
J Immunol ; 188(7): 3199-207, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22393152

ABSTRACT

CD23, the low-affinity receptor for IgE, exists in membrane and soluble forms. Soluble CD23 (sCD23) fragments are released from membrane (m)CD23 by the endogenous metalloprotease a disintegrin and metalloprotease 10. When purified tonsil B cells are incubated with IL-4 and anti-CD40 to induce class switching to IgE in vitro, mCD23 is upregulated, and sCD23 accumulates in the medium prior to IgE synthesis. We have uncoupled the effects of mCD23 cleavage and accumulation of sCD23 on IgE synthesis in this system. We show that small interfering RNA inhibition of CD23 synthesis or inhibition of mCD23 cleavage by an a disintegrin and metalloprotease 10 inhibitor, GI254023X, suppresses IL-4 and anti-CD40-stimulated IgE synthesis. Addition of a recombinant trimeric sCD23 enhances IgE synthesis in this system. This occurs even when endogenous mCD23 is protected from cleavage by GI254023X, indicating that IgE synthesis is positively controlled by sCD23. We show that recombinant trimeric sCD23 binds to cells coexpressing mIgE and mCD21 and caps these proteins on the B cell membrane. Upregulation of IgE by sCD23 occurs after class-switch recombination, and its effects are isotype-specific. These results suggest that mIgE and mCD21 cooperate in the sCD23-mediated positive regulation of IgE synthesis on cells committed to IgE synthesis. Feedback regulation may occur when the concentration of secreted IgE becomes great enough to allow binding to mCD23, thus preventing further release of sCD23. We interpret these results with the aid of a model for the upregulation of IgE by sCD23.


Subject(s)
B-Lymphocytes/immunology , Gene Expression Regulation/immunology , Genes, Immunoglobulin , Immunoglobulin E/biosynthesis , Receptors, IgE/immunology , ADAM Proteins/antagonists & inhibitors , ADAM10 Protein , Amyloid Precursor Protein Secretases/antagonists & inhibitors , B-Lymphocytes/metabolism , Dipeptides/pharmacology , Feedback, Physiological , Homeostasis , Humans , Hydroxamic Acids/pharmacology , Immunoglobulin Class Switching , Immunologic Capping , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/physiology , Protease Inhibitors/pharmacology , Protein Binding , RNA Interference , RNA, Small Interfering/pharmacology , Receptors, Complement 3d/immunology , Receptors, IgE/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Solubility , Up-Regulation
4.
Eur Biophys J ; 41(2): 189-98, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22068826

ABSTRACT

A ubiquitin mutant with two Cys mutations, m[C]q/S65C, was site-specifically labeled with two dye molecules, Alexa Fluor 488 (donor) and Alexa Fluor 594 (acceptor), due to the different reactivity of these two Cys residues. This doubly dye-labeled ubiquitin has lower structural stability than wild-type ubiquitin. Taking advantage of this decreased stability, conformational heterogeneity of this protein under nondenaturing condition was observed at the single-molecule level using single-paired Förster resonance energy transfer (FRET) by trapping the protein in agarose gel. Three conformational populations corresponding to folded (E (ET) ≈ 0.95), loosely packed (E (ET) ≈ 0.72), and unfolded (E (ET) ≈ 0.22) structures, and the structural transitions between them were observed. Our results suggest that agarose immobilization is good for observing structural dynamics of proteins under native condition.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Immobilized Proteins/chemistry , Protein Unfolding , Sepharose/chemistry , Ubiquitin/chemistry , Fluorescent Dyes/chemistry , Gels , Humans , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...