Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-36792064

ABSTRACT

The major biofilm pathway in Salmonella enterica serovar Typhimurium involves specific growth conditions that induce the csgA gene whose product forms surface curli fibers that mediate biofilm formation. We have found that the previously uncharacterized STM1266 gene in S. Typhimurium plays a role in regulating biofilm formation via the curli pathway. S. Typhimurium ΔSTM1266 strains display a biofilm defect, and overexpression of STM1266 results in enhanced biofilm formation. STM1266 deletion resulted in lowered csgA expression using promoter-reporter ß-galactosidase assays, and csgA and csgD deletions abrogate the effects of STM1266 overexpression on biofilm formation while deletion of bcsA (encoding an essential enzyme for cellulose formation) has no effect. In a mouse infection model, the ΔSTM1266 strain displayed results similar to those seen for previously reported ΔcsgA strains. The STM1266 gene is predicted to encode a DNA-binding transcriptional regulator of the MerR family and is homologous to the Escherichia coli BluR regulator protein. We respectfully propose to ascribe the name brfS (biofilm regulator for Salmonella Typhimurium) to the STM1266 gene.


Subject(s)
Bacterial Proteins , Biofilms , Salmonella typhimurium , Animals , Mice , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Serogroup , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...