Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol ; 39(3): 1759-1768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054388

ABSTRACT

Tons of broiler livers are produced yearly in Taiwan but always considered waste. Our team has successfully patented and characterized a chicken-liver hydrolysate (CLH) with several biofunctions. Chronic alcohol consumption causes hepatosteatosis or even hepatitis, cirrhosis, and cancers. This study was to investigate the hepatoprotection of CLH-based supplement (GBHP01™) against chronic alcohol consumption. Results showed that GBHP01™ could reduce (p < .05) enlarged liver size, lipid accumulation/steatosis scores, and higher serum AST, ALT, γ-GT, triglyceride, and cholesterol levels induced by an alcoholic liquid diet. GBHP01™ reduced liver inflammation and apoptosis in alcoholic liquid-diet-fed mice via decreasing TBARS, interleukin-6, interleukin-1ß, and tumor necrosis factor-α levels, increasing reduced GSH/TEAC levels and activities of SOD, CAT and GPx, as well as downregulating CYP2E1, BAX/BCL2, Cleaved CASPASE-9/Total CASPASE-9 and Active CASPASE-3/Pro-CASPASE-3 (p < .05). Furthermore, GBHP01™ elevated hepatic alcohol metabolism (ADH and ALDH activities) (p < .05). In conclusion, this study prove the hepatoprotection of GBHP01™ against alcohol consumption.


Subject(s)
Antioxidants , Fatty Liver , Animals , Mice , Antioxidants/metabolism , Chickens/metabolism , Caspase 9/metabolism , Liver/metabolism , Anti-Inflammatory Agents/pharmacology , Oxidative Stress
2.
J Med Chem ; 64(3): 1435-1453, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33492141

ABSTRACT

In this paper, we present a copper(I)-catalyzed nitrile-addition/N-arylation ring-closure cascade for the synthesis of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones from 2-(2-bromophenyl)-N-(2-cyanophenyl)acetamides. Using CuBr and t-BuONa in dimethylformamide (DMF) as the optimal reaction conditions, the cascade reaction gave the target products, in high yields, with a good substrate scope. Application of the cascade reaction was demonstrated on the concise total syntheses of alkaloid isocryptolepine. Further optimization of the products from the cascade reaction led to 3-chloro-5,12-bis[2-(dimethylamino)ethyl]-5,12-dihydro-6H-[1,3]dioxolo[4',5':5,6]indolo[3,2-c]quinolin-6-one (2k), which exhibited the characteristic DNA topoisomerase-I inhibitory mechanism of action with potent in vitro anticancer activity. Compound 2k actively inhibited ARC-111- and SN-38-resistant HCT-116 cells and showed in vivo activity in mice bearing human HCT-116 and SJCRH30 xenografts. The interaction of 2k with the Top-DNA cleavable complex was revealed by docking simulations to guide the future optimization of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones as topoisomerase-I inhibitors.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Copper/chemistry , Nitriles/chemistry , Quinolones/chemical synthesis , Quinolones/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Animals , Catalysis , DNA Topoisomerases, Type I/chemistry , Drug Design , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Nude , Models, Molecular , Molecular Docking Simulation , Quinolones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Topoisomerase I Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays
3.
J Chin Med Assoc ; 84(1): 51-60, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33177403

ABSTRACT

BACKGROUND: Liposomes containing docosahexaenoic acid (DHA) and phosphatidylserine were claimed to inhibit osteoclast formation and bone resorption in the inflammatory status. Herein, we proposed that an apoptotic mimicry (SQ liposome) prepared from squid-skin phospholipids can explore the suppressive osteoclastogenesis. METHODS: The intermolecular fatty-acid composition in the phospholipid of squid-skin extract was analyzed by GC-FID. The SQ liposome structure was characterized by size distribution and zeta potential (ζ). RAW 264.7 cell is used to study the effect of SQ liposomes on osteoclast differentiation. Secretion of prostaglandin E2 (PGE2) and transforming growth factor-ß (TGF-ß) from RAW 264.7 cells were assayed. Antiosteoclastogenesis effects were performed via the tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell (MNC) counting, bone resorption pit assay, and TRAP activity analysis. The specific gene expressions related to antiosteoclastogenesis were also detected. RESULTS: An apoptotic mimicry through the use of a single-layer liposome (SQ liposome) with phosphatidylserine exposure contains DHA (28.7%) and eicosapentaenoic acid (EPA, 11.8%). Co-treatment with receptor activator of nuclear factor kappa B ligand (RANKL)/macrophage colony-stimulating factor induced RAW 264.7-cell differentiation into mature osteoclasts, thus enhancing PGE2 and TGF-ß secretion. However, cotreatment with 1 mg/mL of SQ liposome restored (p < 0.05) the cell viabilities under the RANKL stress. Increased PGE2 levels was downregulated (p < 0.05) in cotreatments with 0.11 and 0.33 mg/mL of SQ liposome, but on the TGF-ß levels were not (p > 0.05) influenced in SQ liposome cotreatments. Cotreatments with 0.33-1 mg/mL of SQ liposome suppressed (p < 0.05) the osteoclast maturation (such as decreased MNCs and bone pit formation), inhibited TRAP activities, and downregulated the osteoclastogenesis-related gene expressions. CONCLUSION: In summary, current data support that a possible prevention of our prepared SQ liposomes which are rich in DHA and EPA on bone loss is through the suppression of osteoclastogenesis. Moreover, based on the results from this study an in vivo study warrants a further investigation.


Subject(s)
NF-kappa B/physiology , Osteoclasts/drug effects , Osteogenesis/drug effects , Phospholipids/pharmacology , Animals , Decapodiformes/metabolism , Dinoprostone/biosynthesis , Liposomes , Macrophage Colony-Stimulating Factor/pharmacology , Mice , Osteoclasts/physiology , RANK Ligand/pharmacology , RAW 264.7 Cells , Skin/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Transforming Growth Factor beta/biosynthesis
4.
Food Funct ; 9(7): 3986-3996, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29974091

ABSTRACT

The anti-inflammation properties of marine phospholipids enriched with n-3 fatty acids contribute to anti-inflammatory and inflammation-resolving mediators. Functional squid-skin (SQ) liposomes were manufactured from squid-skin phospholipids, and their anti-inflammatory effects were investigated. SQ liposomes included phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and lysophosphatidylcholine (Lyso-PC), and had an approximate diameter of 100 mm. When RAW264.7 cells were treated with the SQ liposome, no (p > 0.05) cytotoxicity was observed below a concentration of 7.5 mg mL-1. An SQ-liposome pretreatment of lipopolysaccharide (LPS)-induced RAW 264.7 cells showed decreased (p < 0.05) prostaglandin E2 (PGE2), nitric oxide (NO), interleukin-1beta (IL-1ß), IL-6, and tumor necrosis factor-alpha (TNF-α). The engulfment of SQ liposomes by the RAW264.7 cells resulted in lower (p < 0.05) LPS-induced intracellular levels of reactive oxygen species. Furthermore, an SQ-liposome administration ameliorated (p < 0.05) carrageenan-induced paw edema in mice. SQ liposomes may act via apoptotic mimicry to elicit the resolution of inflammation and prevent chronic inflammation-related diseases.


Subject(s)
Anti-Inflammatory Agents/chemistry , Decapodiformes/chemistry , Liposomes/chemistry , Phospholipids/chemistry , Skin/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Dinoprostone/immunology , Edema/drug therapy , Edema/genetics , Edema/immunology , Humans , Interleukin-1beta/immunology , Liposomes/pharmacology , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/immunology , Nitric Oxide/immunology , Phospholipids/administration & dosage , Phospholipids/isolation & purification , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/immunology
5.
Eur J Med Chem ; 45(12): 6068-76, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21044810

ABSTRACT

A series of 3-O-acylated (-)-epigallocatechins were synthesized and their inhibition of steroid 5α-reductase was studied. They were prepared from the reaction of EGCG with tert-butyldimethylsilyl chloride followed by reductive cleavage of the ester bond. The resultant (-)-epigallocatechins penta-O-tert-butyldimethylsilyl ether was esterified with different fatty acids then desilylated to provide the corresponding products. The activity of 3-O-acylated (-)-epigallocatechins increased with the increasing carbon numbers of the fatty acid moiety, reaching maximum for 16 carbon atoms (compound 4h) with an IC50 of 0.53 µM, which was ∼12-fold more potent than EGCG (IC50=6.29 µM). Introduction of monounsaturated fatty acid provided the most potent compound 6 (IC50=0.48 µM), which showed moderate anti-tumor activity in vivo.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , 5-alpha Reductase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Catechin/analogs & derivatives , 5-alpha Reductase Inhibitors/chemical synthesis , 5-alpha Reductase Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Catechin/chemical synthesis , Catechin/chemistry , Catechin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Male , Mice , Mice, SCID , Models, Molecular , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...