Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Burn Care Res ; 44(3): 599-609, 2023 05 02.
Article in English | MEDLINE | ID: mdl-35809084

ABSTRACT

While urinary output (UOP) remains the primary endpoint for titration of intravenous fluid resuscitation, it is an insufficient indicator of fluid responsiveness. Although advanced hemodynamic monitoring (including arterial pulse wave analysis [PWA]) is of recent interest, the validity of PWA-derived indices in burn resuscitation extremes has not been established. The goal of this paper is to test the hypothesis that PWA-derived cardiac output (CO) and stroke volume (SV) indices as well as pulse pressure variation (PPV) and systolic pressure variation (SPV) can play a complementary role to UOP in burn resuscitation. Swine were instrumented with a Swan-Ganz catheter for reference CO and underwent a 40% TBSA burns with varying resuscitation paradigms, and were monitored for 24 hours in an ICU setting under mechanical ventilation. The longitudinal changes in PWA-derived indices were investigated, and resuscitation adequacy was compared as determined by UOP vs PWA indices. The results indicated that PWA-derived indices exhibited trends consistent with reference CO and SV measurements: CO and SV indices were proportional to reference CO and SV, respectively (CO: postcalibration limits of agreement [LoA] = ±24.7 [ml/min/kg], SV: postcalibration LoA = ±0.30 [ml/kg]) while PPV and SPV were inversely proportional to reference SV (PPV: postcalibration LoA = ±0.32 [ml/kg], SPV: postcalibration LoA = ±0.31 [ml/kg]). The results also indicated that PWA-derived indices exhibited notable discrepancies from UOP in determining adequate burn resuscitation. Hence, it was concluded that the PWA-derived indices may have complementary value to UOP in assessing and guiding burn resuscitation.


Subject(s)
Burns , Animals , Swine , Burns/therapy , Blood Pressure , Respiration, Artificial , Arteries , Resuscitation/methods , Fluid Therapy/methods , Pulse Wave Analysis , Hemodynamics
2.
IEEE Trans Biomed Eng ; 70(5): 1565-1574, 2023 05.
Article in English | MEDLINE | ID: mdl-36383592

ABSTRACT

OBJECTIVE: To develop a high-fidelity mathematical model intended to replicate the cardiovascular (CV) responses of a critically ill patient to vasoplegic shock-induced hypotension and vasopressor therapy. METHODS: The mathematical model consists of a lumped-parameter CV physiology model with baroreflex modulation feedback and a phenomenological dynamic dose-response model of a vasopressor. The adequacy of the proposed mathematical model was investigated using an experimental dataset acquired from 10 pigs receiving phenylephrine (PHP) therapy after vasoplegic shock induced via sodium nitroprusside (SNP). RESULTS: Upon calibration, the mathematical model could (i) faithfully replicate the effects of PHP on dynamic changes in blood pressure (BP), cardiac output (CO), and systemic vascular resistance (SVR) (root-mean-squared errors between measured and calibrated mathematical responses: mean arterial BP 2.5+/-1.0 mmHg, CO 0.2+/-0.1 lpm, SVR 2.4+/-1.5 mmHg/lpm; r value: mean arterial BP 0.96+/-0.01, CO 0.65+/-0.45, TPR 0.92+/-0.10) and (ii) predict physiologically plausible behaviors of unmeasured internal CV variables as well as secondary baroreflex modulation effects. CONCLUSION: This mathematical model is perhaps the first of its kind that can comprehensively replicate both primary (i.e., direct) and secondary (i.e., baroreflex modulation) effects of a vasopressor drug on an array of CV variables, rendering it ideally suited to pre-clinical virtual evaluation of the safety and efficacy of closed-loop control algorithms for autonomous vasopressor administration once it is extensively validated. SIGNIFICANCE: This mathematical model architecture incorporating both direct and baroreflex modulation effects may generalize to serve as part of an effective platform for high-fidelity in silico simulation of CV responses to vasopressors during vasoplegic shock.


Subject(s)
Baroreflex , Vasoconstrictor Agents , Animals , Swine , Blood Pressure/physiology , Vasoconstrictor Agents/pharmacology , Baroreflex/physiology , Computer Simulation , Models, Cardiovascular
SELECTION OF CITATIONS
SEARCH DETAIL
...