Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(9): 11537-11551, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38361372

ABSTRACT

The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as Ni0.6Fe2.4O4@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich Ni0.6Fe2.4O4@NC electrocatalyst exhibits exceptional ORR and OER activities (ΔE = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the Ni0.6Fe2.4O4@NC catalyst demonstrates a peak power density of 187 mW cm-2 and remarkable long-term cycling stability. The flexible solid-state ZAB using the Ni0.6Fe2.4O4@NC catalyst exhibits a power density of 66 mW cm-2. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.

2.
Nanoscale ; 15(20): 9003-9013, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37128979

ABSTRACT

Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.

4.
Sci Rep ; 12(1): 21156, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36477629

ABSTRACT

Flow batteries possess several attractive features including long cycle life, flexible design, ease of scaling up, and high safety. They are considered an excellent choice for large-scale energy storage. Carbon felt (CF) electrodes are commonly used as porous electrodes in flow batteries. In vanadium flow batteries, both active materials and discharge products are in a liquid phase, thus leaving no trace on the electrode surface. However, zinc-based flow batteries involve zinc deposition/dissolution, structure and configuration of the electrode significantly determine stability and performance of the battery. Herein, fabrication of a compressed composite using CF with polyvinylidene fluoride (PVDF) is investigated in a Zn-Fe flow battery (ZFB). Graphene (G) is successfully introduced in order to improve its electrochemical activity towards zinc reactions on the negative side of the ZFB. A compressed composite CF electrode offers more uniform electric field and lower nucleation overpotential (NOP) of zinc than a pristine CF, resulting in higher zinc plating/stripping efficiency. Batteries with modified electrodes are seen to provide lower overpotential. Particularly, the G-PVDF-CF electrode demonstrates maximum discharge capacity of 39.6 mAh cm-2 with coulombic efficiency and energy efficiency over 96% and 61%, respectively. Finally, results lead to increased efficiency and cycling stability for flow batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...