Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; (682): 105-136, 2017.
Article in English | MEDLINE | ID: mdl-28769725

ABSTRACT

Many parasitoid species are subjected to strong selective pressures from their host, and their adaptive response may result in the formation of genetically differentiated populations, called host races. When environmental factors and reproduction traits prevent gene flow, host races become distinct species. Such a process has recently been documented within the Cotesia flavipes species complex, all of which are larval parasitoids of moth species whose larvae are stem borers of Poales. A previous study on the African species C. sesamiae, incorporating molecular, ecological and biological data on various samples, showed that a particular population could be considered as a distinct species, because it was specialized at both host (Sesamia nonagrioides) and plant (Typha domingensis) levels, and reproductively isolated from other C. sesamiae. Due to its potential for the biological control of S. nonagrioides, a serious corn pest in Mediterranean countries and even in Iran, we describe here Cotesia typhae Fernandez-Triana sp. n. The new species is characterized on the basis of morphological, molecular, ecological and geographical data, which proved to be useful for future collection and rapid identification of the species within the species complex. Fecundity traits and parasitism success on African and European S. nonagrioides populations, estimated by laboratory studies, are also included.

2.
Evol Appl ; 8(8): 807-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366198

ABSTRACT

To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control.

SELECTION OF CITATIONS
SEARCH DETAIL
...