Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Blood ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558106

ABSTRACT

CAR-T cells hold promise as a therapy for B-cell-derived malignancies, yet despite their impressive initial response rates, a significant proportion of patients ultimately experience relapse. While recent studies have explored the mechanisms of in vivo CAR-T cell function, little is understood about the activation of surrounding CARneg bystander T-cells and their potential to enhance tumor responses. We performed single-cell RNA-Seq (scRNA-Seq) on non-human primate (NHP) and patient-derived T-cells to identify the phenotypic and transcriptomic hallmarks of bystander activation of CARneg T-cells following B-cell targeted CAR-T cell therapy. Utilizing a highly translatable CD20 CAR NHP model, we observed a distinct population of activated CD8+ CARneg T-cells emerging during CAR-T cell expansion. These bystander CD8+ CARneg T-cells exhibited a unique transcriptional signature with upregulation of NK-cell markers (KIR3DL2, CD160, KLRD1), chemokines and chemokine receptors (CCL5, XCL1, CCR9), and downregulation of naive T-cell-associated genes (SELL, CD28). A transcriptionally similar population was identified in patients following Tisagenlecleucel infusion. Mechanistic studies revealed that IL-2 and IL-15 exposure induced bystander-like CD8+ T-cells in a dose dependent manner. In vitro activated and patient-derived T-cells with the bystander phenotype efficiently killed leukemic cells through a TCR-independent mechanism. Collectively, this dataset provides the first comprehensive identification and profiling of CARneg bystander CD8+ T-cells following B-cell targeting CAR-T cell therapy and suggests a novel mechanism through which CAR-T cell infusion might trigger enhanced anti-leukemic responses.

3.
Clin Immunol ; 261: 109942, 2024 04.
Article in English | MEDLINE | ID: mdl-38367737

ABSTRACT

Severe combined immunodeficiency (SCID) is characterized by a severe deficiency in T cell numbers. We analyzed data collected (n = 307) for PHA-based T cell proliferation from the PIDTC SCID protocol 6901, using either a radioactive or flow cytometry method. In comparing the two groups, a smaller number of the patients tested by flow cytometry had <10% of the lower limit of normal proliferation as compared to the radioactive method (p = 0.02). Further, in patients with CD3+ T cell counts between 51 and 300 cells/µL, there was a higher proliferative response with the PHA flow assay compared to the 3H-T assay (p < 0.0001), suggesting that the method of analysis influences the resolution and interpretation of PHA results. Importantly, we observed many SCID patients with profound T cell lymphopenia having normal T cell proliferation when assessed by flow cytometry. We recommend this test be considered only as supportive in the diagnosis of typical SCID.


Subject(s)
Lymphopenia , Severe Combined Immunodeficiency , Infant, Newborn , Humans , Severe Combined Immunodeficiency/diagnosis , Lymphopenia/diagnosis , Neonatal Screening/methods , T-Lymphocytes , Cell Proliferation
4.
J Allergy Clin Immunol ; 153(5): 1423-1431.e2, 2024 May.
Article in English | MEDLINE | ID: mdl-38290608

ABSTRACT

BACKGROUND: P47phox (neutrophil cytosolic factor-1) deficiency is the most common cause of autosomal recessive chronic granulomatous disease (CGD) and is considered to be associated with a milder clinical phenotype. Allogeneic hematopoietic cell transplantation (HCT) for p47phox CGD is not well-described. OBJECTIVES: We sought to study HCT for p47phox CGD in North America. METHODS: Thirty patients with p47phox CGD who received allogeneic HCT at Primary Immune Deficiency Treatment Consortium centers since 1995 were included. RESULTS: Residual oxidative activity was present in 66.7% of patients. In the year before HCT, there were 0.38 CGD-related infections per person-years. Inflammatory diseases, predominantly of the lungs and bowel, occurred in 36.7% of the patients. The median age at HCT was 9.1 years (range 1.5-23.6 years). Most HCTs (90%) were performed after using reduced intensity/toxicity conditioning. HCT sources were HLA-matched (40%) and -mismatched (10%) related donors or HLA-matched (36.7%) and -mismatched (13.3%) unrelated donors. CGD-related infections after HCT decreased significantly to 0.06 per person-years (P = .038). The frequency of inflammatory bowel disease and the use of steroids also decreased. The cumulative incidence of graft failure and second HCT was 17.9%. The 2-year overall and event-free survival were 92.3% and 82.1%, respectively, while at 5 years they were 85.7% and 77.0%, respectively. In the surviving patients evaluated, ≥95% donor myeloid chimerism at 1 and 2 years after HCT was 93.8% and 87.5%, respectively. CONCLUSIONS: Patients with p47phox CGD suffer from a significant disease burden that can be effectively alleviated by HCT. Similar to other forms of CGD, HCT should be considered for patients with p47phox CGD.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , NADPH Oxidases , Humans , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/genetics , NADPH Oxidases/genetics , Male , Female , Child , Child, Preschool , Adolescent , Infant , Young Adult , Transplantation, Homologous , Transplantation Conditioning/methods , Graft vs Host Disease , Adult , Treatment Outcome
5.
J Allergy Clin Immunol ; 153(1): 287-296, 2024 01.
Article in English | MEDLINE | ID: mdl-37793572

ABSTRACT

BACKGROUND: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT). OBJECTIVE: We investigated outcomes of HCT for severe combined immunodeficiency (SCID). METHODS: We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers. Eligibility criteria included survival to at least 2 years after HCT without need for subsequent cellular therapy. CLE were defined as either conditions present at any time before 2 years from HCT that remained unresolved (chronic), or new conditions that developed beyond 2 years after HCT (late). RESULTS: The cumulative incidence of CLE was 25% in those alive at 2 years, increasing to 41% at 15 years after HCT. CLE were most prevalent in the neurologic (9%), neurodevelopmental (8%), and dental (8%) categories. Chemotherapy-based conditioning was associated with decreased-height z score at 2 to 5 years after HCT (P < .001), and with endocrine (P < .001) and dental (P = .05) CLE. CD4 count of ≤500 cells/µL and/or continued need for immunoglobulin replacement therapy >2 years after transplantation were associated with lower-height z scores. Continued survival from 2 to 15 years after HCT was 90%. The presence of any CLE was associated with increased risk of late death (hazard ratio, 7.21; 95% confidence interval, 2.71-19.18; P < .001). CONCLUSION: Late morbidity after HCT for SCID was substantial, with an adverse impact on overall survival. This study provides evidence for development of survivorship guidelines based on disease characteristics and treatment exposure for patients after HCT for SCID.


Subject(s)
Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Child , Humans , Severe Combined Immunodeficiency/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Incidence , Canada/epidemiology , Retrospective Studies , Transplantation Conditioning
6.
Clin Case Rep ; 11(11): e8190, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38028059

ABSTRACT

Treatment of recurrent myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) remains challenging. We present a 4-year-old girl experiencing early MDS relapse post-HCT treated with a multimodal strategy encompassing a second HCT and innovative targeted therapies. We underscore the potential of a comprehensive treatment approach in managing recurrent pediatric MDS.

7.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37659505

ABSTRACT

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Subject(s)
Gastrointestinal Microbiome , Granulomatous Disease, Chronic , Inflammatory Bowel Diseases , Humans , Granulomatous Disease, Chronic/genetics , NADPH Oxidases , Cross-Sectional Studies
8.
Blood Adv ; 7(16): 4647-4657, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37603347

ABSTRACT

The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in ∼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.


Subject(s)
Graft vs Host Disease , Interleukin-2 , Child , Humans , Young Adult , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Immunotherapy , Interleukin-2/administration & dosage , Retrospective Studies , Infant , Child, Preschool , Adolescent
9.
Blood ; 142(24): 2105-2118, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37562003

ABSTRACT

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening infections and inflammatory conditions. Hematopoietic cell transplantation (HCT) is the definitive treatment for CGD, but questions remain regarding patient selection and impact of active disease on transplant outcomes. We performed a multi-institutional retrospective and prospective study of 391 patients with CGD treated either conventionally (non-HCT) enrolled from 2004 to 2018 or with HCT from 1996 to 2018. Median follow-up after HCT was 3.7 years with a 3-year overall survival of 82% and event-free survival of 69%. In a multivariate analysis, a Lansky/Karnofsky score <90 and use of HLA-mismatched donors negatively affected survival. Age, genotype, and oxidase status did not affect outcomes. Before HCT, patients had higher infection density, higher frequency of noninfectious lung and liver diseases, and more steroid use than conventionally treated patients; however, these issues did not adversely affect HCT survival. Presence of pre-HCT inflammatory conditions was associated with chronic graft-versus-host disease. Graft failure or receipt of a second HCT occurred in 17.6% of the patients and was associated with melphalan-based conditioning and/or early mixed chimerism. At 3 to 5 years after HCT, patients had improved growth and nutrition, resolved infections and inflammatory disease, and lower rates of antimicrobial prophylaxis or corticosteroid use compared with both their baseline and those of conventionally treated patients. HCT leads to durable resolution of CGD symptoms and lowers the burden of the disease. Patients with active infection or inflammation are candidates for transplants; HCT should be considered before the development of comorbidities that could affect performance status. This trial was registered at www.clinicaltrials.gov as #NCT02082353.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Retrospective Studies , Prospective Studies , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/adverse effects , Genotype , Transplantation Conditioning/adverse effects , Graft vs Host Disease/prevention & control
10.
Lancet ; 402(10396): 129-140, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37352885

ABSTRACT

BACKGROUND: Severe combined immunodeficiency (SCID) is fatal unless durable adaptive immunity is established, most commonly through allogeneic haematopoietic cell transplantation (HCT). The Primary Immune Deficiency Treatment Consortium (PIDTC) explored factors affecting the survival of individuals with SCID over almost four decades, focusing on the effects of population-based newborn screening for SCID that was initiated in 2008 and expanded during 2010-18. METHODS: We analysed transplantation-related data from children with SCID treated at 34 PIDTC sites in the USA and Canada, using the calendar time intervals 1982-89, 1990-99, 2000-09, and 2010-18. Categorical variables were compared by χ2 test and continuous outcomes by the Kruskal-Wallis test. Overall survival was estimated by the Kaplan-Meier method. A multivariable analysis using Cox proportional hazards regression models examined risk factors for HCT outcomes, including the variables of time interval of HCT, infection status and age at HCT, trigger for diagnosis, SCID type and genotype, race and ethnicity of the patient, non-HLA-matched sibling donor type, graft type, GVHD prophylaxis, and conditioning intensity. FINDINGS: For 902 children with confirmed SCID, 5-year overall survival remained unchanged at 72%-73% for 28 years until 2010-18, when it increased to 87% (95% CI 82·1-90·6; n=268; p=0·0005). For children identified as having SCID by newborn screening since 2010, 5-year overall survival was 92·5% (95% CI 85·8-96·1), better than that of children identified by clinical illness or family history in the same interval (79·9% [69·5-87·0] and 85·4% [71·8-92·8], respectively [p=0·043]). Multivariable analysis demonstrated that the factors of active infection (hazard ratio [HR] 2·41, 95% CI 1·56-3·72; p<0·0001), age 3·5 months or older at HCT (2·12, 1·38-3·24; p=0·001), Black or African-American race (2·33, 1·56-3·46; p<0·0001), and certain SCID genotypes to be associated with lower overall survival during all time intervals. Moreover, after adjusting for several factors in this multivariable analysis, HCT after 2010 no longer conveyed a survival advantage over earlier time intervals studied (HR 0·73, 95% CI 0·43-1·26; p=0·097). This indicated that younger age and freedom from infections at HCT, both directly driven by newborn screening, were the main drivers for recent improvement in overall survival. INTERPRETATION: Population-based newborn screening has facilitated the identification of infants with SCID early in life, in turn leading to prompt HCT while avoiding infections. Public health programmes worldwide can benefit from this definitive demonstration of the value of newborn screening for SCID. FUNDING: National Institute of Allergy and Infectious Diseases, Office of Rare Diseases Research, and National Center for Advancing Translational Sciences.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Hematopoietic Stem Cell Transplantation/methods , Longitudinal Studies , Neonatal Screening , Proportional Hazards Models , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics
11.
J Allergy Clin Immunol ; 151(2): 547-555.e5, 2023 02.
Article in English | MEDLINE | ID: mdl-36456360

ABSTRACT

BACKGROUND: Shearer et al in 2014 articulated well-defined criteria for the diagnosis and classification of severe combined immunodeficiency (SCID) as part of the Primary Immune Deficiency Treatment Consortium's (PIDTC's) prospective and retrospective studies of SCID. OBJECTIVE: Because of the advent of newborn screening for SCID and expanded availability of genetic sequencing, revision of the PIDTC 2014 Criteria was needed. METHODS: We developed and tested updated PIDTC 2022 SCID Definitions by analyzing 379 patients proposed for prospective enrollment into Protocol 6901, focusing on the ability to distinguish patients with various SCID subtypes. RESULTS: According to PIDTC 2022 Definitions, 18 of 353 patients eligible per 2014 Criteria were considered not to have SCID, whereas 11 of 26 patients ineligible per 2014 Criteria were determined to have SCID. Of note, very low numbers of autologous T cells (<0.05 × 109/L) characterized typical SCID under the 2022 Definitions. Pathogenic variant(s) in SCID-associated genes was identified in 93% of patients, with 7 genes (IL2RG, RAG1, ADA, IL7R, DCLRE1C, JAK3, and RAG2) accounting for 89% of typical SCID. Three genotypes (RAG1, ADA, and RMRP) accounted for 57% of cases of leaky/atypical SCID; there were 13 other rare genotypes. Patients with leaky/atypical SCID were more likely to be diagnosed at more than age 1 year than those with typical SCID lacking maternal T cells: 20% versus 1% (P < .001). Although repeat testing proved important, an initial CD3 T-cell count of less than 0.05 × 109/L differentiated cases of typical SCID lacking maternal cells from leaky/atypical SCID: 97% versus 7% (P < .001). CONCLUSIONS: The PIDTC 2022 Definitions describe SCID and its subtypes more precisely than before, facilitating analyses of SCID characteristics and outcomes.


Subject(s)
Severe Combined Immunodeficiency , Infant, Newborn , Humans , Infant , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Retrospective Studies , Prospective Studies , Homeodomain Proteins/genetics
12.
Transplant Cell Ther ; 28(11): 737-746, 2022 11.
Article in English | MEDLINE | ID: mdl-35902050

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted global health and healthcare delivery systems. To characterize the secondary effects of the COVID-19 pandemic and mitigation strategies used in the delivery of hematopoietic stem cell transplantation (HSCT) care, we performed a comprehensive literature search encompassing changes in specific donor collection, processing practices, patient outcomes, and patient-related concerns specific to HSCT and HSCT-related healthcare delivery. In this review, we summarize the available literature on the secondary impacts the COVID-19 pandemic on the fields of HSCT and cellular therapy. The COVID-19 pandemic has had numerous secondary impacts on patients undergoing HSCT and the healthcare delivery systems involved in providing complex care to HSCT recipients. Institutions must identify these influences on outcomes and adjust accordingly to maintain and improve outcomes for the transplantation and cellular therapy community.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , SARS-CoV-2 , Ecosystem , Delivery of Health Care
13.
Blood ; 140(7): 685-705, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35671392

ABSTRACT

Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.


Subject(s)
Agammaglobulinemia , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Adenosine Deaminase , Agammaglobulinemia/genetics , Child, Preschool , Humans , Infant , Infant, Newborn , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy
14.
Transplant Cell Ther ; 28(5): 233-241, 2022 05.
Article in English | MEDLINE | ID: mdl-35151937

ABSTRACT

Quality improvement and quality assurance form a complementary and independent relationship. Quality assurance measures compliance against industry standards using audits, whereas quality improvement is a continuous process focused on processes and systems that can improve care. The Model for Improvement is a robust quality improvement tool that transplant and cellular therapy teams can use to redesign healthcare processes. The Model for Improvement uses several components addressed in sequence to organize and critically evaluate improvement activities. Unlike other health sciences clinical research, quality improvement projects, and research are based on dynamic hypotheses that develop into observable, serial tests of change with continuous collection and feedback of performance data to stakeholders.


Subject(s)
Hematopoietic Stem Cell Transplantation , Quality Improvement , Delivery of Health Care
15.
Transplant Cell Ther ; 27(8): 696.e1-696.e4, 2021 08.
Article in English | MEDLINE | ID: mdl-33864966

ABSTRACT

Long-term survival following hematopoietic stem cell transplant (HSCT) in childhood continues to improve, and patients are thus increasingly faced with the late effects of treatment. Infertility is very common for both males and females following HSCT and is one of the most distressing sequelae. Adoption and surrogate egg or sperm donation are possibilities for some patients, but post-HSCT reversal of gonadal failure is not possible. We have recently initiated an oncofertility program with a dedicated practitioner with specific expertise in this area. Our practice is for her to meet with all families and age-appropriate patients during the pre-HSCT evaluation period. This allows patients and families to be accurately informed about the expected treatment-related infertility risk and the available options for fertility preservation. Sperm banking and egg or embryo cryopreservation are established approaches but are not achievable for many children and adolescents. Recently, the harvesting and cryopreservation of ovarian and testicular tissue represents a novel surgical option that allows for the possibility of fertility preservation to be extended to children of all ages. The purpose of this investigation is to evaluate the safety of these procedures proximal to conditioning therapy and HSCT. This is a retrospective report on a consecutive cohort of all patients aged 0 to 25 years who, after discussion with our oncofertility specialist, chose to undergo surgical fertility preservation (laparoscopic unilateral oophorectomy or testicular biopsy) at our institution between March 2018 and April 2020. These procedures occurred under general anesthesia at the time of central line placement prior to the initiation of HSCT conditioning. We assess the safety of the procedures in terms of postoperative complications and impact on HSCT course. Twenty-two patients underwent fertility preservation surgical procedures. Thirteen patients (59%) were female, median age 13 years (1 to 22 years), and 9 (41%) were male, median age 8 years (5 to 12 years). Fourteen (63%) were prepubertal and 8 (36%) pubertal. HSCT indications were hematologic malignancies/solid tumor (40%) and nonmalignant diseases (60%). Most received an allogenic graft (68%) and 81% had myeloablative conditioning. All patients became neutropenic at a median of 10 days (0 to 51 days) from the surgical procedure; 1 was neutropenic at the time of testicular tissue cryopreservation (TTC). The mean duration for the procedures performed, including ovarian tissue cryopreservation (OTC) or TTC, was 98 minutes (49 to 260 minutes) and 97 minutes (56 to 178 minutes), respectively. Estimated blood loss was minimal and no postoperative site infections occurred. One postprocedure, blood culture-negative fever was reported without an identifiable source; the patient completed 48 hours of antibiotics with resolution of fever. Sixty-two percent of females and 56% of males started conditioning within 24 hours of OTC/TTC (15 hours to 113 days; median, 1 day). The median time to engraftment was 22 days (9 to 33 days) in females and 17 days (11 to 67 days) in males, consistent with our institutional benchmarks. One patient with aplastic anemia had primary graft failure, attributed to low cell dose. This patient engrafted after a second transplant from an alternative donor but ultimately died of multiorgan failure. He was neutropenic for over 60 days and never experienced surgical site infection. There were no procedure-related delays to start of conditioning or to discharge. Children of all ages can now be offered the possibility of fertility preservation following HSCT for benign and malignant conditions. Our review suggests that these procedure for both females and males can be performed close to the start of conditioning, which allows for coupling with central access placement. These procedures appear to be safe and do not add to transplant-related morbidity.


Subject(s)
Fertility Preservation , Hematopoietic Stem Cell Transplantation , Adolescent , Child , Cryopreservation , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Retrospective Studies , Transplantation Conditioning
16.
J Cancer ; 10(16): 3842-3850, 2019.
Article in English | MEDLINE | ID: mdl-31333801

ABSTRACT

The recombination mediated by recombination activating gene (RAG) is not only the dominant mutational process but also the predominant driver of oncogenic genomic rearrangement in acute lymphoblastic leukemia (ALL). It is further responsible for leukemic clonal evolution. In this study, significant RAG1 increase is observed in the subsets of B-ALL patients, and high expression of RAG1 is observed to be correlated with high proliferation markers. IKZF1-encoded protein, IKAROS, directly binds to the RAG1 promoter and regulates RAG1 expression in leukemic cells. CK2 inhibitor by increasing IKAROS activity significantly suppresses RAG1 expression in ALL in an IKAROS-dependent manner. Patients with IKZF1 deletion have significantly higher expression of RAG1 compared to that without IKZF1 deletion. CK2 inhibitor treatment also results in an increase in IKZF1 binding to the RAG1 promoter and suppression of RAG1 expression in primary ALL cells. Taken together, these results demonstrate that RAG1 high expression is associated with high proliferation markers in B-ALL. Our data for the first time proved that RAG1 expression is directly suppressed by IKAROS. Our results also reveal drive oncogenesis of B-ALL is driven by high expression of RAG1 with IKAROS dysfunction together, which have significance in an integrated prognostic model for adult ALL.

17.
Childs Nerv Syst ; 34(8): 1605-1608, 2018 08.
Article in English | MEDLINE | ID: mdl-29616298

ABSTRACT

INTRODUCTION: Intracranial malignant peripheral nerve sheath tumor (MPNST) is exceedingly rare. Previously reported cases of intracranial MPNST have been associated with development within a prominent cranial nerve. METHODS: This is the first report of an MPNST with both nerve sheath and vascular phenotype that follows the neurovascular bundle, without arising in a major cranial nerve or in the setting of neurofibromatosis type 1 (NF1). RESULTS: The patient is a 14-year-old boy with a history of worsening headaches for the past several months, left-sided hearing loss, nausea, vomiting, and vertigo. MRI was performed that demonstrated a large extra-axial tumor compressing the left infratemporal posterior temporal region. The tumor was associated with significant destruction of the superior portion of the petrous bone and extension through the petrous into the upper posterior fossa, immediately below the tentorium. The patient underwent surgical debulking and adjuvant chemotherapy with doxorubicin and ifosfamide. Pathology demonstrated a variant malignant peripheral nerve sheath tumor with both nerve sheath and vascular phenotype by immunostains. The patient's symptoms improved following treatment. CONCLUSION: We present the first reported case of an intracranial MPNST variant that developed along the neurovascular bundle as a sarcoma with both nerve sheath and vascular phenotype through the petrous bone and not associated with a major cranial nerve or with stigmata of neurofibromatosis type 1 (NF1). Although this is an extremely unusual presentation due to location and lack of prominent cranial nerves in that location, it is not unusual for benign nerve sheath tumors to follow the neurovascular bundle through foramen of cortical long bone or pelvis. This case suggests that physicians should incorporate intracranial MPNST variant into their differential diagnosis in the cranium, even when tumor is not located near a prominent cranial nerve. Surgical debulking and adjuvant chemotherapy with doxorubicin and ifosfamide has led to improvement in patient symptoms.


Subject(s)
Bone Neoplasms/diagnostic imaging , Nerve Sheath Neoplasms/diagnostic imaging , Petrous Bone/diagnostic imaging , Phenotype , Sarcoma/diagnostic imaging , Vascular Neoplasms/diagnostic imaging , Adolescent , Bone Neoplasms/secondary , Bone Neoplasms/surgery , Humans , Male , Neoplasm Invasiveness/diagnostic imaging , Nerve Sheath Neoplasms/surgery , Petrous Bone/surgery , Sarcoma/surgery , Vascular Neoplasms/surgery
18.
Adv Biol Regul ; 65: 16-25, 2017 08.
Article in English | MEDLINE | ID: mdl-28623166

ABSTRACT

Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.


Subject(s)
Casein Kinase II/genetics , Gene Expression Regulation, Leukemic , Glycogen Synthase Kinase 3/genetics , Ikaros Transcription Factor/genetics , Leukemia/genetics , Antineoplastic Agents/therapeutic use , Casein Kinase II/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Ikaros Transcription Factor/metabolism , Leukemia/diagnosis , Leukemia/drug therapy , Leukemia/mortality , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Prognosis , Signal Transduction , Survival Analysis
19.
Curr Pharm Des ; 23(1): 95-107, 2017.
Article in English | MEDLINE | ID: mdl-27719640

ABSTRACT

BACKGROUND: Casein kinase II (CK2) is a pro-oncogenic protein, which is emerging as a promising therapeutic target in cancer. Recent studies have revealed an important role for CK2 in tumorigenesis. High levels of CK2 are noted in many malignancies including leukemia. Use of CK2 inhibitors in various malignancies including breast, prostate, and lung cancer are being tested. Although many CK2 inhibitors exist, only a few have emerged as selective inhibitors that are potent and effective. CX-4945 is a selective, orallybioavailable small molecule inhibitor, which has shown encouraging results in pre-clinical models of leukemia. METHODS: In this review we will elaborate on the structure and physiological function of the CK2 protein as well as its role in cancer. We will review, in depth, the role of CK2 in leukemia and its mechanisms of tumorigenesis via phosphorylation of the tumor suppressor protein Ikaros. We will discuss both the importance of Ikaros in leukemia suppression and the restoration of Ikaros' tumor suppressor function after CK2 inhibition by CX-4945 (a CK2-specific inhibitor). RESULTS: CK2 is an oncogene that is overexpressed in hematological malignancies. In high risk Pre-B ALL, CK2 phosphorylates Ikaros tumor suppressor and promotes leukemogenesis. Inhibition of CK2 using CX4945 restores Ikaros function and leads to anti leukemic effects in vitro and in pre-clinical leukemia models. CONCLUSION: CK2 is an attractive target in treatment of various cancers. Currently only a few specific CK2 inhibitors are available. Preclinical studies using CK2 inhibitor, CX4945 in high risk pediatric leukemias have shown promising results and warrants further testing in other types of leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Casein Kinase II/antagonists & inhibitors , Hematologic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Hematologic Neoplasms/metabolism , Humans , Protein Kinase Inhibitors/chemistry
20.
Adv Biol Regul ; 63: 71-80, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27666503

ABSTRACT

The IKZF1 gene encodes the Ikaros protein, a zinc finger transcriptional factor that acts as a master regulator of hematopoiesis and a tumor suppressor in leukemia. Impaired activity of Ikaros is associated with the development of high-risk acute lymphoblastic leukemia (ALL) with a poor prognosis. The molecular mechanisms that regulate Ikaros' function as a tumor suppressor and regulator of cellular proliferation are not well understood. We demonstrated that Ikaros is a substrate for Casein Kinase II (CK2), an oncogenic kinase that is overexpressed in ALL. Phosphorylation of Ikaros by CK2 impairs Ikaros' DNA-binding ability, as well as Ikaros' ability to regulate gene expression and function as a tumor suppressor in leukemia. Targeting CK2 with specific inhibitors restores Ikaros' function as a transcriptional regulator and tumor suppressor resulting in a therapeutic, anti-leukemia effect in a preclinical model of ALL. Here, we review the genes and pathways that are regulated by Ikaros and the molecular mechanisms through which Ikaros and CK2 regulate cellular proliferation in leukemia.


Subject(s)
Casein Kinase II/genetics , Chromatin/immunology , Ikaros Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes/immunology , Animals , Antineoplastic Agents/pharmacology , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/immunology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Proliferation/drug effects , Chromatin/chemistry , Chromatin/drug effects , Chromatin Assembly and Disassembly/drug effects , DNA Nucleotidylexotransferase/genetics , DNA Nucleotidylexotransferase/immunology , Gene Expression Regulation , Humans , Ikaros Transcription Factor/immunology , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/immunology , Naphthyridines/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Phenazines , Phosphorylation/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Repressor Proteins/genetics , Repressor Proteins/immunology , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...