Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(16): 18062-18071, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680341

ABSTRACT

Here, we introduce an electronic circuit that mimics the functionality of a biological spiking neuron following the Fitzhugh-Nagumo (FN) model. The circuit consists of a tunnel diode that exhibits negative differential resistance (NDR) and an active inductive element implemented by a single MOSFET. The FN neuron converts a DC voltage excitation into voltage spikes analogous to biological action potentials. We predict an energy cost of 2 aJ/cycle through detailed simulation and modeling for these FN neurons. Such an FN neuron is CMOS compatible and enables ultralow power oscillatory and spiking neural network hardware. We demonstrate that FN neurons can be used for oscillator-based computing in a coupled oscillator network to form an oscillator Ising machine (OIM) that can solve computationally hard NP-complete max-cut problems while showing robustness toward process variations.

2.
Nano Lett ; 24(8): 2581-2588, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349389

ABSTRACT

In this work, we explore III-V based metal-semiconductor-metal structures for tunable metasurfaces. We use an epitaxial transfer technique to transfer a III-V thin film directly on metallic surfaces, realizing III-V metal-semiconductor-metal (MSM) structures without heavily doped semiconductors as substitutes for metal layers. The device platform consists of gold metal layers with a p-i-n GaAs junction. The target resonance wavelength can be tuned by modifying the geometry of the top metal grating on the GaAs, while systematic resonance tunability has been shown through the modulation of various carrier concentration injections in the mid-IR range. Electrically tunable metasurfaces with multilevel biasing can serve as a fundamental building block for electrically tunable metasurfaces. We believe that our demonstration can contribute to understanding the optical tuning of III-V under various biased conditions, inducing changes in metasurfaces.

3.
ACS Nano ; 16(11): 18497-18502, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36326197

ABSTRACT

It has been proposed that metal-semiconductor-metal (MSM) structures can be used to tune the absorptivity of a metasurface at infrared wavelengths. Indium arsenide (InAs) is a low-band-gap, high-electron-mobility semiconductor that may enable rapid index tuning for dynamic control over the infrared spectrum. However, direct growth of III-V thin films on top of metals has typically resulted in small-grain, polycrystalline materials that are not amenable to high-quality devices. Previously, epitaxial wafers were used for this purpose. However, the epitaxial constraints required that InAs be used for both the tuning layer and the bottom "metallic" layer, limiting the range of accessible designs. In this work, we show a demonstration of direct growth of single-crystalline InAs on metal to build tunable absorbers/emitters in the infrared regime. The growth was carried out at a temperature of 300 °C by the low temperature templated liquid phase (LT-TLP) method. The size of InAs single-crystalline mesas is ∼2500 µm2, enabling the desired device sizes. The proposed growth and device enable scalable and tunable infrared devices for various thermal-photonic applications.

4.
Lab Chip ; 21(4): 674-687, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33439202

ABSTRACT

Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks. ITO caused substrate discoloration but did not prevent brightfield imaging. ITO-patterned substrates were microcontact printed with arrayed lines of fibronectin and seeded with neonatal rat ventricular myocytes, which assembled into aligned cardiac tissues. ITO deposited as parallel or point electrodes was connected to an external stimulator and used to successfully stimulate micropatterned cardiac tissues to generate calcium transients or propagating calcium waves, respectively. ITO electrodes were also integrated into the cantilever-based muscular thin film (MTF) assay to stimulate and quantify the contraction of micropatterned cardiac tissues. To demonstrate the potential for multiple ITO electrodes to be integrated into larger, multiplexed systems, two sets of ITO electrodes were deposited onto a single substrate and used to stimulate the contraction of distinct micropatterned cardiac tissues independently. Collectively, these approaches for integrating ITO electrodes into heart-on-a-chip devices are relatively facile, modular, and scalable and could have diverse applications in microphysiological systems of excitable tissues.


Subject(s)
Lab-On-A-Chip Devices , Tin Compounds , Animals , Dimethylpolysiloxanes , Rats , Reproducibility of Results
5.
Nano Lett ; 20(10): 7793-7801, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32960612

ABSTRACT

As one of the key neuronal activities associated with memory in the human brain, memory consolidation is the process of the transition of short-term memory (STM) to long-term memory (LTM), which transforms an external stimulus to permanently stored information. Here, we report the emulation of this complex synaptic function, consolidation of STM to LTM, in a single-crystal indium phosphide (InP) field effect transistor (FET)-based artificial synapse. This behavior is achieved via the dielectric band and charge trap lifetime engineering in a dielectric gate heterostructure of aluminum oxide and titanium oxide. We analyze the behavior of these complex synaptic functions by engineering a variety of action potential parameters, and the devices exhibit good endurance, long retention time (>105 s), and high uniformity. Uniquely, this approach utilizes growth and device fabrication techniques which are scalable and back-end CMOS compatible, making this InP synaptic device a potential building block for neuromorphic computing.


Subject(s)
Memory, Short-Term , Synapses , Action Potentials , Humans , Memory, Long-Term , Neurons
6.
ACS Appl Mater Interfaces ; 12(10): 11907-11912, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32083460

ABSTRACT

There are various mechanisms of light emission in carbon nanotubes (CNTs), which give rise to a wide range of spectral characteristics that provide important information. Here we report suppression of incandescence via Auger recombination in suspended carbon nanotube pn-junctions generated from dual-gate CNT field-effect transistor (FET) devices. By applying equal and opposite voltages to the gate electrodes (i.e., Vg1 = -Vg2), we create a pn-junction within the CNT. Under these gating conditions, we observe a sharp peak in the incandescence intensity around zero applied gate voltage, where the intrinsic region has the largest spatial extent. Here, the emission occurs under high electrical power densities of around 0.1 MW/cm2 (or 6 µW) and arises from thermal emission at elevated temperatures above 800 K (i.e., incandescence). It is somewhat surprising that this thermal emission intensity is so sensitive to the gating conditions, and we observe a 1000-fold suppression of light emission between Vg1 = 0 and 15 V, over a range in which the electrical power dissipated in the nanotube is roughly constant. This behavior is understood on the basis of Auger recombination, which suppresses light emission by the excitation of free carriers. Based on the calculated carrier density and band profiles, the length of the intrinsic region drops by a factor of 7-25× over the range from |Vg| = 0 to 15 V. We, therefore, conclude that the light emission intensity is significantly dependent on the free carrier density profile and the size of the intrinsic region in these CNT devices.

7.
Nano Lett ; 20(3): 1791-1799, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32097556

ABSTRACT

Here, we show that the turn-on voltage for the hydrogen evolution reaction on a graphene surface can be tuned in a semiconductor-insulator-graphene (SIG) device immersed in a solution. Specifically, it is shown that the hydrogen evolution reaction (HER) onset for the graphene can shift by >0.8 V by application of a voltage across a graphene-Al2O3-silicon junction. We show that this shift occurs due to the creation of a hot electron population in graphene due to tunneling from the Si to graphene. Through control experiments, we show that the presence of the graphene is necessary for this behavior. By analyzing the silicon, graphene, and solution current components individually, we find an increase in the silicon current despite a fixed graphene-silicon voltage, corresponding to an increase in the HER current. This additional silicon current appears to directly drive the electrochemical reaction, without modifying the graphene current. We term this current "direct injection current" and hypothesize that this current occurs due to electrons injected from the silicon into graphene that drives the HER before any electron-electron scattering occurs in the graphene. To further determine whether hot electrons injected at different energies could explain the observed total solution current, the nonequilibrium electron dynamics was studied using a 2D ensemble Monte Carlo Boltzmann transport equation (MCBTE) solver. By rigorously considering the key scattering mechanisms, we show that the injected hot electrons can significantly increase the available electron flux at high energies. These results show that semiconductor-insulator-graphene devices are a platform which can tune the electrochemical reaction rate via multiple mechanisms.

8.
Nano Lett ; 19(9): 6227-6234, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31433658

ABSTRACT

Using hot electrons to drive electrochemical reactions has drawn considerable interest in driving high-barrier reactions and enabling efficient solar to fuel conversion. However, the conversion efficiency from hot electrons to electrochemical products is typically low due to high hot electron scattering rates. Here, it is shown that the hydrogen evolution reaction (HER) in an acidic solution can be efficiently modulated by hot electrons injected into a thin gold film by an Au-Al2O3-Si metal-insulator-semiconductor (MIS) junction. Despite the large scattering rates in gold, it is shown that the hot electron driven HER can reach quantum efficiencies as high as ∼85% with a shift in the onset of hydrogen evolution by ∼0.6 V. By simultaneously measuring the currents from the solution, gold, and silicon terminals during the experiments, we find that the HER rate can be decomposed into three components: (i) thermal electron, corresponding to the thermal electron distribution in gold; (ii) hot electron, corresponding to electrons injected from silicon into gold which drive the HER before fully thermalizing; and (iii) silicon direct injection, corresponding to electrons injected from Si into gold that drive the HER before electron-electron scattering occurs. Through a series of control experiments, we eliminate the possibility of the observed HER rate modulation coming from lateral resistivity of the thin gold film, pinholes in the gold, oxidation of the MIS device, and measurement circuit artifacts. Next, we theoretically evaluate the feasibility of hot electron injection modifying the available supply of electrons. Considering electron-electron and electron-phonon scattering, we track how hot electrons injected at different energies interact with the gold-solution interface as they scatter and thermalize. The simulator is first used to reproduce other published experimental pump-probe hot electron measurements, and then simulate the experimental conditions used here. These simulations predict that hot electron injection first increases the supply of electrons to the gold-solution interface at higher energies by several orders of magnitude and causes a peaked electron interaction with the gold-solution interface at the electron injection energy. The first prediction corresponds to the observed hot electron electrochemical current, while the second prediction corresponds to the observed silicon direct injection current. These results indicate that MIS devices offer a versatile platform for hot electron sources that can efficiently drive electrochemical reactions.

9.
ACS Nano ; 12(6): 5158-5167, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29775282

ABSTRACT

The growth of crystalline compound semiconductors on amorphous and non-epitaxial substrates is a fundamental challenge for state-of-the-art thin-film epitaxial growth techniques. Direct growth of materials on technologically relevant amorphous surfaces, such as nitrides or oxides results in nanocrystalline thin films or nanowire-type structures, preventing growth and integration of high-performance devices and circuits on these surfaces. Here, we show crystalline compound semiconductors grown directly on technologically relevant amorphous and non-epitaxial substrates in geometries compatible with standard microfabrication technology. Furthermore, by removing the traditional epitaxial constraint, we demonstrate an atomically sharp lateral heterojunction between indium phosphide and tin phosphide, two materials with vastly different crystal structures, a structure that cannot be grown with standard vapor-phase growth approaches. Critically, this approach enables the growth and manufacturing of crystalline materials without requiring a nearly lattice-matched substrate, potentially impacting a wide range of fields, including electronics, photonics, and energy devices.

10.
ACS Nano ; 12(2): 1656-1663, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29328623

ABSTRACT

Neuromorphic or "brain-like" computation is a leading candidate for efficient, fault-tolerant processing of large-scale data as well as real-time sensing and transduction of complex multivariate systems and networks such as self-driving vehicles or Internet of Things applications. In biology, the synapse serves as an active memory unit in the neural system and is the component responsible for learning and memory. Electronically emulating this element via a compact, scalable technology which can be integrated in a three-dimensional (3-D) architecture is critical for future implementations of neuromorphic processors. However, present day 3-D transistor implementations of synapses are typically based on low-mobility semiconductor channels or technologies that are not scalable. Here, we demonstrate a crystalline indium phosphide (InP)-based artificial synapse for spiking neural networks that exhibits elasticity, short-term plasticity, long-term plasticity, metaplasticity, and spike timing-dependent plasticity, emulating the critical behaviors exhibited by biological synapses. Critically, we show that this crystalline InP device can be directly integrated via back-end processing on a Si wafer using a SiO2 buffer without the need for a crystalline seed, enabling neuromorphic devices that can be implemented in a scalable and 3-D architecture. Specifically, the device is a crystalline InP channel field-effect transistor that interacts with neuron spikes by modification of the population of filled traps in the MOS structure itself. Unlike other transistor-based implementations, we show that it is possible to mimic these biological functions without the use of external factors (e.g., surface adsorption of gas molecules) and without the need for the high electric fields necessary for traditional flash-based implementations. Finally, when exposed to neuronal spikes with a waveform similar to that observed in the brain, these devices exhibit the ability to learn without the need for any external potentiating/depressing circuits, mimicking the biological process of Hebbian learning.


Subject(s)
Biomimetic Materials/chemistry , Biomimetics/instrumentation , Indium/chemistry , Neural Networks, Computer , Phosphines/chemistry , Silicon/chemistry , Synapses/physiology , Bionics/instrumentation , Crystallization , Equipment Design , Semiconductors , Synapses/chemistry
11.
ACS Nano ; 11(5): 5113-5119, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28463486

ABSTRACT

Recent developments in nanophotonics have provided a clear roadmap for improving the efficiency of photonic devices through control over absorption and emission of devices. These advances could prove transformative for a wide variety of devices, such as photovoltaics, photoelectrochemical devices, photodetectors, and light-emitting diodes. However, it is often challenging to physically create the nanophotonic designs required to engineer the optical properties of devices. Here, we present a platform based on crystalline indium phosphide that enables thin-film nanophotonic structures with physical morphologies that are impossible to achieve through conventional state-of-the-art material growth techniques. Here, nanostructured InP thin films have been demonstrated on non-epitaxial alumina inverted nanocone (i-cone) substrates via a low-cost and scalable thin-film vapor-liquid-solid growth technique. In this process, indium films are first evaporated onto the i-cone structures in the desired morphology, followed by a high-temperature step that causes a phase transformation of the indium into indium phosphide, preserving the original morphology of the deposited indium. Through this approach, a wide variety of nanostructured film morphologies are accessible using only control over evaporation process variables. Critically, the as-grown nanotextured InP thin films demonstrate excellent optoelectronic properties, suggesting this platform is promising for future high-performance nanophotonic devices.

12.
Phys Chem Chem Phys ; 19(4): 2877-2881, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28074948

ABSTRACT

We report measurements of photocatalytic water splitting using Au films with and without TiO2 coatings. In these structures, a thin (3-10 nm) film of TiO2 is deposited using atomic layer deposition (ALD) on top of a 100 nm thick Au film. We utilize an AC lock-in technique, which enables us to detect the relatively small photocurrents (∼µA) produced by the short-lived hot electrons that are photoexcited in the metal. Under illumination, the bare Au film produces a small AC photocurrent (<1 µA) for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) due to hot electrons and hot holes, respectively, that are photoexcited in the Au film. The samples with TiO2 produce a larger AC photocurrent indicating that hot electrons are being injected from the metal into the TiO2 semiconductor where they then reduce hydrogen ions in solution forming H2 (i.e., 2H+ + 2e- → H2). The AC photocurrent exhibits a narrow peak when plotted as a function of reference potential, which is a signature of hot electrons. Here, we photoexcite a monoenergetic source of hot electrons, which produces a peak in the photocurrent, as the electrode potential is swept through the resonance with the redox potential of the desired half-reaction. This stands in contrast to conventional bulk semiconductor photocatalysts, whose AC photocurrent saturates beyond a certain potential (i.e., light limited photocurrent). The photocurrents produced at the metal-liquid interface are smaller than those of the metal-semiconductor system, mainly because, in the metal-semiconductor system, there is a continuum of energy and momentum states that each hot electron can be injected into, while for an ion in solution, the number of energy and momentum states are very small.

13.
Adv Mater ; 29(9)2017 Mar.
Article in English | MEDLINE | ID: mdl-28004864

ABSTRACT

Transition metal perovskite chalcogenides are a new class of versatile semiconductors with high absorption coefficient and luminescence efficiency. Polycrystalline materials synthesized by an iodine-catalyzed solid-state reaction show distinctive optical colors and tunable bandgaps across the visible range in photoluminescence, with one of the materials' external efficiency approaching the level of single-crystal InP and CdSe.

14.
Nat Commun ; 7: 10502, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813257

ABSTRACT

The III-V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III-V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III-V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III-V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III-V's on application-specific substrates by direct growth.

15.
ACS Nano ; 9(12): 11551-6, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26498635

ABSTRACT

We present a comparative study of quasi-metallic (Eg ∼ 100 meV) and semiconducting (Eg ∼ 1 eV) suspended carbon nanotube pn-junctions introduced by electrostatic gating. While the built-in fields of the quasi-metallic carbon nanotubes (CNTs) are 1-2 orders of magnitude smaller than those of the semiconducting CNTs, their photocurrent is 2 orders of magnitude higher than the corresponding semiconducting CNT devices under the same experimental conditions. Here, the large exciton binding energy in semiconducting nanotubes (∼400 meV) makes it difficult for excitons to dissociate into free carriers that can contribute to an externally measured photocurent. As such, semiconducting nanotubes require a phonon to assist in the exciton dissociation process, in order to produce a finite photocurrent, while quasi-metallic nanotubes do not. The quasi-metallic nanotubes have much lower exciton binding energies (∼50 meV) as well as a continuum of electronic states to decay into and, therefore, do not require the absorption of a phonon in order to dissociate, making it much easier for these excitons to produce a photocurrent. We performed detailed simulations of the band energies in quasi-metallic and semiconducting nanotube devices in order to obtain the electric field profiles along the lengths of the nanotubes. These simulations predict maximum built-in electric field strengths of 2.3 V/µm for semiconducting and 0.032-0.22 V/µm for quasi-metallic nanotubes under the applied gate voltages used in this study.

16.
Nano Lett ; 14(8): 4592-7, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24988370

ABSTRACT

Transition metal dichalcogenides, such as MoS2 and WSe2, have recently gained tremendous interest for electronic and optoelectronic applications. MoS2 and WSe2 monolayers are direct bandgap and show bright photoluminescence (PL), whereas multilayers exhibit much weaker PL due to their indirect optical bandgap. This presents an obstacle for a number of device applications involving light harvesting or detection where thicker films with direct optical bandgap are desired. Here, we experimentally demonstrate a drastic enhancement in PL intensity for multilayer WSe2 (2-4 layers) under uniaxial tensile strain of up to 2%. Specifically, the PL intensity of bilayer WSe2 is amplified by ∼ 35× , making it comparable to that of an unstrained WSe2 monolayer. This drastic PL enhancement is attributed to an indirect to direct bandgap transition for strained bilayer WSe2, as confirmed by density functional theory (DFT) calculations. Notably, in contrast to MoS2 multilayers, the energy difference between the direct and indirect bandgaps of WSe2 multilayers is small, thus allowing for bandgap crossover at experimentally feasible strain values. Our results present an important advance toward controlling the band structure and optoelectronic properties of few-layer WSe2 via strain engineering, with important implications for practical device applications.

17.
Nano Lett ; 14(3): 1337-42, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24568656

ABSTRACT

The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band of MoS2, thus resulting in large Schottky barrier heights for holes with limited hole injection from the contacts. Here, we show that substoichiometric molybdenum trioxide (MoOx, x < 3), a high work function material, acts as an efficient hole injection layer to MoS2 and WSe2. In particular, we demonstrate MoS2 p-type field-effect transistors and diodes by using MoOx contacts. We also show drastic on-current improvement for p-type WSe2 FETs with MoOx contacts over devices made with Pd contacts, which is the prototypical metal used for hole injection. The work presents an important advance in contact engineering of TMDCs and will enable future exploration of their performance limits and intrinsic transport properties.


Subject(s)
Disulfides , Molybdenum , Oxides , Transistors, Electronic , Electric Impedance
18.
Sci Rep ; 3: 2275, 2013.
Article in English | MEDLINE | ID: mdl-23881474

ABSTRACT

III-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi-junction cells. However, expensive epitaxial growth substrates, low precursor utilization rates, long growth times, and large equipment investments restrict applications to concentrated and space photovoltaics (PVs). Here, we demonstrate the first vapor-liquid-solid (VLS) growth of high-quality III-V thin-films on metal foils as a promising platform for large-area terrestrial PVs overcoming the above obstacles. We demonstrate 1-3 µm thick InP thin-films on Mo foils with ultra-large grain size up to 100 µm, which is ~100 times larger than those obtained by conventional growth processes. The films exhibit electron mobilities as high as 500 cm²/V-s and minority carrier lifetimes as long as 2.5 ns. Furthermore, under 1-sun equivalent illumination, photoluminescence efficiency measurements indicate that an open circuit voltage of up to 930 mV can be achieved, only 40 mV lower than measured on a single crystal reference wafer.

19.
Nano Lett ; 13(2): 555-8, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23256503

ABSTRACT

Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as ~150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theoretically assessed by a method that combines Fermi's golden rule and a numerical Schrödinger-Poisson simulation to determine the surface scattering potential with the theoretical calculations being consistent with experiments. Near ballistic transport (~80% of the ballistic limit) is demonstrated experimentally for transistors with a channel length of ~60 nm, owing to the long mean free path of electrons in InAs NWs.


Subject(s)
Arsenicals/chemistry , Indium/chemistry , Nanowires/chemistry , Temperature , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL
...