Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 133(2): 021601, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39073938

ABSTRACT

Recent work has shown that loop corrections from massless particles generate 3/2logT_{Hawking} corrections to black hole entropy which dominate the thermodynamics of cold near-extreme charged black holes. Here we adapt this analysis to near-extreme Kerr black holes. Like AdS_{2}×S^{2}, the near-horizon extreme Kerr (NHEK) metric has a family of normalizable zero modes corresponding to reparametrizations of boundary time. The path integral over these zero modes leads to an infrared divergence in the one-loop approximation to the Euclidean NHEK partition function. We regulate this divergence by retaining the leading finite temperature correction in the NHEK scaling limit. This "not-NHEK" geometry lifts the eigenvalues of the zero modes, rendering the path integral infrared finite. The quantum-corrected near-extremal entropy exhibits 3/2logT_{Hawking} behavior characteristic of the Schwarzian model and predicts a lifting of the ground state degeneracy for the extremal Kerr black hole.

2.
Proc Math Phys Eng Sci ; 476(2237): 20190618, 2020 May.
Article in English | MEDLINE | ID: mdl-32523409

ABSTRACT

The event horizon telescope (EHT) is expected to soon produce polarimetric images of the supermassive black hole at the centre of the neighbouring galaxy M87. There are indications that this black hole is rapidly spinning. General relativity predicts that such a high-spin black hole has an emergent conformal symmetry near its event horizon. In this paper, we use this symmetry to analytically predict the polarized near-horizon emissions to be seen at the EHT and find a distinctive pattern of whorls aligned with the spin.

3.
Sci Adv ; 6(12): eaaz1310, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32206723

ABSTRACT

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin "photon ring," which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole "shadow," becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.

4.
Phys Rev Lett ; 119(12): 121601, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29341660

ABSTRACT

We use the subleading soft-graviton theorem to construct an operator T_{zz} whose insertion in the four-dimensional tree-level quantum gravity S matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional conformal field theory (CFT_{2}). The celestial sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT_{2}, with the Lorentz group acting as the unbroken SL(2,C) subgroup.

SELECTION OF CITATIONS
SEARCH DETAIL