Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645088

ABSTRACT

Imaging reporter genes are indispensable for visualising biological processes in living subjects, particularly in cancer research where they have been used to observe tumour development, cancer cell dissemination, and treatment response. Engineering reporter genes into the germline frequently involves single imaging modality reporters operating over limited spatial scales. To address these limitations, we developed an inducible triple-reporter mouse model (Rosa26LSL - NRL) that integrates reporters for complementary imaging modalities, flfluorescence, bioluminescence and positron emission tomography (PET), along with inducible Cre-lox functionality for precise spatiotemporal control of reporter expression. We demonstrated robust reporter inducibility across various tissues in the Rosa26LSL - NRL mouse, facilitating effective tracking and characterisation of tumours in liver and lung cancer mouse models. We precisely pinpointed tumour location using multimodal whole-body imaging which guided in situ lung microscopy to visualise cell-cell interactions within the tumour microenvironment. The triple-reporter system establishes a robust new platform technology for multi-scale investigation of biological processes within whole animals, enabling tissue-specific and sensitive cell tracking, spanning from the whole-body to cellular scales.

2.
Nat Commun ; 13(1): 4075, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835905

ABSTRACT

Th17 cells are key drivers of autoimmune disease. However, the signaling pathways regulating Th17 polarization are poorly understood. Hedgehog signaling regulates cell fate decisions during embryogenesis and adult tissue patterning. Here we find that cell-autonomous Hedgehog signaling, independent of exogenous ligands, selectively drives the polarization of Th17 cells but not other T helper cell subsets. We show that endogenous Hedgehog ligand, Ihh, signals to activate both canonical and non-canonical Hedgehog pathways through Gli3 and AMPK. We demonstrate that Hedgehog pathway inhibition with either the clinically-approved small molecule inhibitor vismodegib or genetic ablation of Ihh in CD4+ T cells greatly diminishes disease severity in two mouse models of intestinal inflammation. We confirm that Hedgehog pathway expression is upregulated in tissue from human ulcerative colitis patients and correlates with Th17 marker expression. This work implicates Hedgehog signaling in Th17 polarization and intestinal immunopathology and indicates the potential therapeutic use of Hedgehog inhibitors in the treatment of inflammatory bowel disease.


Subject(s)
Colitis, Ulcerative , Th17 Cells , Adult , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mice , Signal Transduction , Virulence
3.
Blood ; 140(5): 464-477, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35653588

ABSTRACT

Hematopoietic stem cells (HSCs) are of major clinical importance, and finding methods for their in vitro generation is a prime research focus. We show here that the cell cycle inhibitor p57Kip2/Cdkn1c limits the number of emerging HSCs by restricting the size of the sympathetic nervous system (SNS) and the amount of HSC-supportive catecholamines secreted by these cells. This regulation occurs at the SNS progenitor level and is in contrast to the cell-intrinsic function of p57Kip2 in maintaining adult HSCs, highlighting profound differences in cell cycle requirements of adult HSCs compared with their embryonic counterparts. Furthermore, this effect is specific to the aorta-gonad-mesonephros (AGM) region and shows that the AGM is the main contributor to early fetal liver colonization, as early fetal liver HSC numbers are equally affected. Using a range of antagonists in vivo, we show a requirement for intact ß2-adrenergic signaling for SNS-dependent HSC expansion. To gain further molecular insights, we have generated a single-cell RNA-sequencing data set of all Ngfr+ sympathoadrenal cells around the dorsal aorta to dissect their differentiation pathway. Importantly, this not only defined the relevant p57Kip2-expressing SNS progenitor stage but also revealed that some neural crest cells, upon arrival at the aorta, are able to take an alternative differentiation pathway, giving rise to a subset of ventrally restricted mesenchymal cells that express important HSC-supportive factors. Neural crest cells thus appear to contribute to the AGM HSC niche via 2 different mechanisms: SNS-mediated catecholamine secretion and HSC-supportive mesenchymal cell production.


Subject(s)
Hematopoietic Stem Cells , Mesonephros , Aorta , Cell Differentiation , Gonads
4.
Cell Stem Cell ; 29(4): 528-544.e9, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35276096

ABSTRACT

The autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone. A neurotrophic dependency mediated through GDNF-family receptor-α2 (GFRα2) and its ligand, neurturin (NRTN), is established between sympathetic cholinergic fibers and bone-embedded osteocytes, which require cholinergic innervation for their survival and connectivity. Bone-lining osteoprogenitors amplify and propagate cholinergic signals in the bone marrow (BM). Moderate exercise augments trabecular bone partly through an IL-6-dependent expansion of sympathetic cholinergic nerve fibers. Consequently, loss of cholinergic skeletal innervation reduces osteocyte survival and function, causing osteopenia and impaired skeletal adaptation to moderate exercise. These results uncover a cholinergic neuro-osteocyte interface that regulates skeletogenesis and skeletal turnover through bone-anabolic effects.


Subject(s)
Interleukin-6 , Osteogenesis , Cholinergic Agents , Cholinergic Fibers , Glial Cell Line-Derived Neurotrophic Factor Receptors/physiology
5.
Ann Rheum Dis ; 79(12): 1625-1634, 2020 12.
Article in English | MEDLINE | ID: mdl-32963046

ABSTRACT

OBJECTIVES: Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA. METHODS: Fluorescent genetic cell-labelling and tracing mouse models were induced with tamoxifen to switch on reporter expression, as appropriate, followed by surgery to induce destabilisation of the medial meniscus. Contributions of fluorescently labelled cells to osteophytes after 2 or 8 weeks, and their molecular identity, were analysed by histology, immunofluorescence staining and RNA in situ hybridisation. Pdgfrα-H2BGFP mice and Pdgfrα-CreER mice crossed with multicolour Confetti reporter mice were used for identification and clonal tracing of mesenchymal progenitors. Mice carrying Col2-CreER, Nes-CreER, LepR-Cre, Grem1-CreER, Gdf5-Cre, Sox9-CreER or Prg4-CreER were crossed with tdTomato reporter mice to lineage-trace chondrocytes and stem/progenitor cell subpopulations. RESULTS: Articular chondrocytes, or skeletal stem cells identified by Nes, LepR or Grem1 expression, did not give rise to osteophytes. Instead, osteophytes derived from Pdgfrα-expressing stem/progenitor cells in periosteum and synovium that are descendants from the Gdf5-expressing embryonic joint interzone. Further, we show that Sox9-expressing progenitors in periosteum supplied hybrid skeletal cells to the early osteophyte, while Prg4-expressing progenitors from synovial lining contributed to cartilage capping the osteophyte, but not to bone. CONCLUSION: Our findings reveal distinct periosteal and synovial skeletal progenitors that cooperate to form osteophytes in OA. These cell populations could be targeted in disease modification for treatment of OA.


Subject(s)
Osteoarthritis/pathology , Osteophyte/pathology , Periosteum/pathology , Stem Cells/pathology , Synovial Membrane/pathology , Animals , Cell Lineage , Mice
6.
IUBMB Life ; 72(1): 45-52, 2020 01.
Article in English | MEDLINE | ID: mdl-31634421

ABSTRACT

Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Embryo, Mammalian/cytology , Embryonic Development , Endothelium, Vascular/cytology , GATA3 Transcription Factor/metabolism , Hematopoietic Stem Cells/cytology , Animals , Aorta/cytology , Aorta/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Embryo, Mammalian/metabolism , Endothelium, Vascular/metabolism , Female , GATA3 Transcription Factor/genetics , Gonads/cytology , Gonads/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Mesonephros/cytology , Mesonephros/metabolism , Mice , Mice, Inbred C57BL
7.
Sci Rep ; 9(1): 4370, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867444

ABSTRACT

For many diseases with a foetal origin, the cause for the disease initiation remains unknown. Common childhood acute leukaemia is thought to be caused by two hits, the first in utero and the second in childhood in response to infection. The mechanism for the initial DNA damaging event are unknown. Here we have used in vitro, ex vivo and in vivo models to show that a placental barrier will respond to agents that are suspected of initiating childhood leukaemia by releasing factors that cause DNA damage in cord blood and bone marrow cells, including stem cells. We show that DNA damage caused by in utero exposure can reappear postnatally after an immune challenge. Furthermore, both foetal and postnatal DNA damage are prevented by prenatal exposure of the placenta to a mitochondrially-targeted antioxidant. We conclude that the placenta might contribute to the first hit towards leukaemia initiation by bystander-like signalling to foetal haematopoietic cells.


Subject(s)
DNA Damage , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/metabolism , Placenta/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , Carcinogens/pharmacology , Chromosome Aberrations , Culture Media, Conditioned , DNA Damage/drug effects , Female , Fibroblasts/metabolism , Humans , Infant, Newborn , Leukemia, Myeloid, Acute/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Pregnancy , Signal Transduction/drug effects , Stem Cells/metabolism , Trophoblasts/drug effects , Trophoblasts/metabolism
8.
Cell Rep ; 16(4): 1039-1054, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27396339

ABSTRACT

MLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease's development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia.


Subject(s)
Cell Self Renewal/physiology , Lymphocytes/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Animals , Leukemia/metabolism , Lymphoma, B-Cell/metabolism , Mice , Mice, Transgenic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
9.
Blood ; 127(19): 2298-309, 2016 05 12.
Article in English | MEDLINE | ID: mdl-26864339

ABSTRACT

The regulation of hematopoietic stem cell (HSC) emergence during development provides important information about the basic mechanisms of blood stem cell generation, expansion, and migration. We set out to investigate the role that cytokine signaling pathways play in these early processes and show here that the 2 cytokines interleukin 3 and thrombopoietin have the ability to expand hematopoietic stem and progenitor numbers by regulating their survival and proliferation. For this, they differentially use the Janus kinase (Jak2) and phosphatidylinositol 3-kinase (Pi3k) signaling pathways, with Jak2 mainly relaying the proproliferation signaling, whereas Pi3k mediates the survival signal. Furthermore, using Jak2-deficient embryos, we demonstrate that Jak2 is crucially required for the function of the first HSCs, whereas progenitors are less dependent on Jak2. The JAK2V617F mutation, which renders JAK2 constitutively active and has been linked to myeloproliferative neoplasms, was recently shown to compromise adult HSC function, negatively affecting their repopulation and self-renewal ability, partly through the accumulation of JAK2V617F-induced DNA damage. We report here that nascent HSCs are resistant to the JAK2V617F mutation and show no decrease in repopulation or self-renewal and no increase in DNA damage, even in the presence of 2 mutant copies. More importantly, this unique property of embryonic HSCs is stably maintained through ≥1 round of successive transplantations. In summary, our dissection of cytokine signaling in embryonic HSCs has uncovered unique properties of these cells that are of clinical importance.


Subject(s)
Embryo, Mammalian/metabolism , Hematopoietic Stem Cells/metabolism , Janus Kinase 2 , Mutation, Missense , Myeloproliferative Disorders , Signal Transduction , Amino Acid Substitution , Animals , Cytokines/genetics , Cytokines/metabolism , DNA Damage , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Mice, Knockout , Myeloproliferative Disorders/embryology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism
10.
PLoS One ; 8(7): e69572, 2013.
Article in English | MEDLINE | ID: mdl-23894504

ABSTRACT

BACKGROUND: Channelling the development of haematopoietic progenitor cells into T lymphocytes is dependent upon a series of extrinsic prompts whose temporal and spatial sequence is critical for a productive outcome. Simple models of human progenitor cells development depend in the main on the use of xenogeneic systems which may provide some limitations to development. METHODS AND FINDINGS: Here we provide evidence that a simple model system which utilises both human keratinocyte and fibroblast cell lines arrayed on a synthetic tantalum coated matrix provides a permissive environment for the development of human CD34⁺ haematopoietic cells into mature CD4⁺ or CD8⁺ T lymphocytes in the presence of Interleukin 7 (IL-7), Interleukin 15 (IL-15) and the Fms-like tyrosine kinase 3 ligand (Flt-3L). This system was used to compare the ability of CD34(+) cells to produce mature thymocytes and showed that whilst these cells derived from cord blood were able to productively differentiate into thymocytes the system was not permissive for the development of CD34(+) cells from adult peripheral blood. CONCLUSIONS/SIGNIFICANCE: Our study provides direct evidence for the capacity of human cord blood CD34(+) cells to differentiate along the T lineage in a simple human model system. Productive commitment of the CD34⁺ cells to generate T cells was found to be dependent on a three-dimensional matrix which induced the up-regulation of the Notch delta-like ligand 4 (Dll-4) by epithelial cells.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Coculture Techniques , Hematopoietic Stem Cells/cytology , Antigens, CD34 , Blood Cells/cytology , Cell Line , Feeder Cells , Fetal Blood/cytology , Fibroblasts/cytology , Humans , Keratinocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...