Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(12): 8354-8383, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34100601

ABSTRACT

Interleukin 17 (IL-17) cytokines promote inflammatory pathophysiology in many autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Such broad involvement of IL-17 in various autoimmune diseases makes it an ideal target for drug discovery. Psoriasis is a chronic inflammatory disease characterized by numerous defective components of the immune system. Significantly higher levels of IL-17A have been noticed in lesions of psoriatic patients, if compared to non-lesion parts. Therefore, this paper is focused on the macrolide inspired macrocycles as potential IL-17A/IL-17RA modulators and covers the molecular design, synthesis, and in vitro profiling. Macrocycles are designed to diversify and enrich chemical space through different ring sizes and a variety of three-dimensional shapes. Inhibitors in the nM range were identified in both target-based and phenotypic assays. In vitro ADME as well as in vivo PK properties are reported.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Interleukin-17/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , Protein Binding/drug effects , Receptors, Interleukin-17/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , Humans , Interleukin-17/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Receptors, Interleukin-17/metabolism , Structure-Activity Relationship , THP-1 Cells
2.
J Med Chem ; 55(13): 6111-23, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22697905

ABSTRACT

Macrolide antibiotics, like erythromycin, clarithromycin, and azithromycin, possess anti-inflammatory properties. These properties are considered fundamental to the efficacy of these three macrolides in the treatment of chronic inflammatory diseases like diffuse panbronchiolitis and cystic fibrosis. However, long-term treatment with macrolide antibiotics presents a considerable risk for promotion of bacterial resistance. We have examined antibacterial and anti-inflammatory effects of a novel macrolide class: N'-substituted 2'-O,3'-N-carbonimidoyl bridged erythromycin-derived 14- and 15-membered macrolides. A small focused library was prepared, and compounds without antimicrobial activity, which inhibited IL-6 production, were selected. Data analysis led to a statistical model that could be used for the design of novel anti-inflammatory macrolides. The most promising compound from this library retained the anti-inflammatory activity observed with azithromycin in lipopolysaccharide-induced pulmonary neutrophilia in vivo. Importantly, this study strongly suggests that antimicrobial and anti-inflammatory activities of macrolides are independent and can be separated, which raises development plausibility of novel anti-inflammatory therapeutics.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Erythromycin/analogs & derivatives , Interleukin-6/antagonists & inhibitors , Macrolides/chemistry , Macrolides/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Azithromycin/pharmacology , Azithromycin/therapeutic use , Bronchiolitis/drug therapy , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Cystic Fibrosis/drug therapy , Drug Interactions/immunology , Drug Resistance, Bacterial/immunology , Erythromycin/pharmacology , Erythromycin/therapeutic use , Haemophilus Infections/drug therapy , Haemophilus influenzae/drug effects , Humans , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/adverse effects , Lung/immunology , Macrolides/chemical synthesis , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Moraxella catarrhalis/drug effects , Neutrophils/immunology , Rats , Rats, Sprague-Dawley , Streptococcus/drug effects
3.
Bioorg Med Chem ; 19(23): 7281-98, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22047805

ABSTRACT

Three macrolides, clarithromycin, azithromycin and 11-O-Me-azithromycin have been selected for the construction of a series of new macrolone derivatives. Quinolone-linker intermediates are prepared by Sonogashira-type C(6)-alkynylation of 6-iodoquinolone precursors. The final macrolones, differing by macrolide moiety and substituents at the position N-1 of the quinolone or by the presence of an ethyl ester or free acid on the quinolone unit attached via a linker. The linker comprises of a central piperazine ring bonded to the 4″-O position of cladinose by 3-carbon ester or ether functionality. Modifications of the linker did not improve antibacterial properties compared to the previously reported macrolone compounds. Linker flexibility seems to play an important role for potency against macrolide resistant respiratory pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Macrolides/chemistry , Macrolides/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Macrolides/chemical synthesis , Piperazine , Piperazines/chemical synthesis , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem ; 19(23): 7270-80, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22041174

ABSTRACT

A set of novel macrolones containing the flexible C8 basic linker and quinolone 3-(2'-hydroxyethyl)carboxamido group has been prepared and structurally characterized by NMR and IR spectroscopy, mass spectrometry and molecular modeling. The new compounds were evaluated in vitro against a panel of erythromycin-susceptible and erythromycin-resistant Gram-positive and Gram-negative bacterial strains. Compared to azithromycin, most of the compounds exhibited improved in vitro potency against the key respiratory pathogens.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Azithromycin/analogs & derivatives , Macrolides/chemical synthesis , Quinolones/chemical synthesis , Anti-Bacterial Agents/chemistry , Azithromycin/chemical synthesis , Humans , Macrolides/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Quinolones/chemistry , Structure-Activity Relationship
5.
Eur J Med Chem ; 46(8): 3388-97, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21600677

ABSTRACT

Synthesis, antibacterial activity and pharmacokinetic properties of a novel class of macrolide antibiotics-macrolones-derived from azithromycin, comprising oxygen atom(s) in the linker and either free or esterified quinolone 3-carboxylic group, are reported. Selected compounds showed excellent antibacterial potency towards key erythromycin resistant respiratory pathogens. However, the majority of compounds lacked good bioavailability. The isopropyl ester, compound 35, and a macrolone derivative with an elongated linker 29 showed the best oral bioavailability in rats, both accompanied with an excellent overall microbiology profile addressing inducible and constitutive MLSb as well as efflux mediated macrolide resistance in streptococci, while compound 29 is more potent against staphylococci.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Azithromycin/chemical synthesis , Macrolides/chemical synthesis , Microsomes, Liver/drug effects , Pneumococcal Infections/drug therapy , Streptococcus pneumoniae/drug effects , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacokinetics , Azithromycin/analogs & derivatives , Azithromycin/pharmacokinetics , Biological Availability , Carboxylic Acids/chemistry , Crystallography, X-Ray , Drug Stability , Esters/chemistry , Humans , Injections, Intravenous , Macrolides/pharmacokinetics , Male , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Models, Molecular , Pneumococcal Infections/microbiology , Rats , Rats, Wistar , Streptococcus pneumoniae/growth & development
6.
Bioorg Med Chem ; 18(17): 6578-88, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20688524

ABSTRACT

In this paper synthesis of macrolones 1-18 starting from azithromycin is reported. Two key steps in the construction of the linker between macrolide and quinolone moiety, are formation of central ether bond by alkylation of unactivated OH group, and formation of terminal C-C bond at 6-position of the quinolone unit. Due to the difficulty in formation of these two bonds the study of alternative synthetic methodologies and optimization of the conditions for the selected routes was required. Formation of C-4''-O-ether bond was completed by modified Michael addition, whereas O-alkylation via diazonium cation proved to be the most effective in formation of the central allylic or propargylic ether bond. Comparison of Heck and Sonogashira reaction revealed the former as preferred route to the C-C bond formation at C(6) position of the quinolone unit. Most of the target compounds exhibited highly favorable antibacterial activity against common respiratory pathogens, without significant cytotoxicity profile when tested in vitro on eukaryotic cell lines.


Subject(s)
Azithromycin/analogs & derivatives , Cross-Linking Reagents/chemistry , Ethers/chemistry , Macrolides/chemistry , Cross-Linking Reagents/chemical synthesis , Ethers/chemical synthesis , Humans , Macrolides/chemical synthesis , Models, Chemical , Molecular Structure
7.
Bioorg Med Chem ; 18(17): 6569-77, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20673633

ABSTRACT

Two series of clarithromycin and azithromycin derivatives with terminal 6-alkylquinolone-3-carboxylic unit with central ether bond in the linker were prepared and tested for antimicrobial activity. Quinolone-linker intermediates were prepared by Sonogashira-type C(6)-alkynylation of 6-iodo-quinolone precursors. In the last step, 4'' site-selective acylation of 2'-protected macrolides was completed with the EDC reagent, which selectively activated a terminal, aliphatic carboxylic group in dicarboxylic intermediates. Antimicrobial activity of the new series of macrolones is discussed. The most potent compound, 4''-O-{6-[3-(3-carboxy-1-ethyl-4-oxo-1,4-dihydroquinolin-6-yl)-propoxy]-hexanoyl}-azithromycin (10), is highly active against bacterial respiratory pathogens resistant to macrolide antibiotics and represents a promising lead for further investigation.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Azithromycin/analogs & derivatives , Clarithromycin/analogs & derivatives , Macrolides/chemical synthesis , Quinolones/chemical synthesis , Anti-Bacterial Agents/chemistry , Azithromycin/chemistry , Azithromycin/pharmacology , Clarithromycin/chemistry , Clarithromycin/pharmacology , Humans , Macrolides/chemistry , Macrolides/pharmacology , Microbial Sensitivity Tests , Quinolones/chemistry , Quinolones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...