Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4637, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941162

ABSTRACT

Quantum sensors are known for their high sensitivity in sensing applications. However, this sensitivity often comes with severe restrictions on other parameters which are also important. Examples are that in measurements of arbitrary signals, limitation in linear dynamic range could introduce distortions in magnitude and phase of the signal. High frequency resolution is another important feature for reconstructing unknown signals. Here, we demonstrate a distortion-free quantum sensing protocol that combines a quantum phase-sensitive detection with heterodyne readout. We present theoretical and experimental investigations using nitrogen-vacancy centers in diamond, showing the capability of reconstructing audio frequency signals with an extended linear dynamic range and high frequency resolution. Melody and speech based signals are used for demonstrating the features. The methods could broaden the horizon for quantum sensors towards applications, e.g. telecommunication in challenging environment, where low-distortion measurements are required at multiple frequency bands within a limited volume.

2.
Phys Rev Lett ; 127(9): 096804, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506167

ABSTRACT

The existence of classical nonradiating electromagnetic sources is one of the puzzling questions to date. Here, we investigate radiation properties of physical systems composed of a single ultrahigh permittivity dielectric hollow disk excited by electric or magnetic pointlike dipole antennas, placed inside the inner bore. Using analytical and numerical methods, we demonstrate that such systems can support anapole states with total suppression of far-field radiation and thereby exhibit the properties of electric or magnetic nonradiating sources. It is shown that the suppression of the far-field radiated power is a result of the destructive interference between radiative contributions of the pointlike dipole antennas and the corresponding induced dipole moments of the hollow disk. The experimental investigation of the nonradiating electric source has been performed to confirm our theoretical predictions. Our results pave the way to create and realize compact nonradiative sources for applications in modern wireless power transfer systems, sensors, RFID tags, and medical technologies.

3.
ACS Appl Mater Interfaces ; 13(31): 36737-36746, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34313441

ABSTRACT

Real-time temperature monitoring within biological objects is a key fundamental issue for understanding the heating process and performing remote-controlled release of bioactive compounds upon laser irradiation. The lack of accurate thermal control significantly limits the translation of optical laser techniques into nanomedicine. Here, we design and develop hybrid (complex) carriers based on multilayered capsules combined with nanodiamonds (NV centers) as nanothermometers and gold nanoparticles (Au NPs) as nanoheaters to estimate an effective laser-induced temperature rise required for capsule rupture and further release of cargo molecules outside and inside cancerous (B16-F10) cells. We integrate both elements (NV centers and Au NPs) in the capsule structure using two strategies: (i) loading inside the capsule's cavity (CORE) and incorporating them inside the capsule's wall (WALL). Theoretically and experimentally, we show the highest and lowest heat release from capsule samples (CORE or WALL) under laser irradiation depending on the Au NP arrangement within the capsule. Applying NV centers, we measure the local temperature of capsule rupture inside and outside the cells, which is determined to be 128 ± 1.12 °C. Finally, the developed hybrid containers can be used to perform the photoinduced release of cargo molecules with simultaneous real-time temperature monitoring inside the cells.


Subject(s)
Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Thermometry/methods , Animals , Cell Line, Tumor , Drug Liberation , Fluorescent Dyes/toxicity , Gold/chemistry , Gold/radiation effects , Gold/toxicity , Indoles/chemistry , Light , Magnetic Resonance Spectroscopy/methods , Metal Nanoparticles/radiation effects , Metal Nanoparticles/toxicity , Mice , Polymers/toxicity , Temperature , Thermometry/instrumentation
4.
Nanoscale ; 12(40): 20604-20609, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33048100

ABSTRACT

Metagratings have been shown to form an agile and efficient platform for extreme wavefront manipulation, going beyond the limitations of gradient metasurfaces. Here, we present all-dielectric transmissive metagratings with high diffraction efficiencies using simple rectangular inclusions with neither high index nor high aspect ratio requirement. We further experimentally demonstrate continuous phase encoding of a hologram based on such transmissive metagratings through displacement modulation of CMOS-compatible silicon nitride nanobars in the full visible range, manifesting broadband and wide-angle high diffraction efficiencies for both polarizations. Featured with extreme angle/wavelength/polarization tolerance and alleviated structural complexity for both design and fabrication, our demonstration unlocks the full potential of metagrating-based wavefront manipulation for a variety of practical applications.

5.
Rev Sci Instrum ; 91(3): 035003, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32259924

ABSTRACT

The sensing applications of nitrogen-vacancy color centers in a diamond require an efficient manipulation of the color center ground state over the whole volume of an ensemble. Thus, it is necessary to produce strong uniform magnetic fields of a well-defined circular polarization at microwave frequencies. In this paper, we develop a circularly polarized microwave antenna based on the excitation of hybrid electromagnetic modes in a high-permittivity dielectric resonator. The influence of the geometrical parameters of the antenna on the reflection coefficient and magnetic field magnitude is studied numerically and discussed. The Rabi frequencies and their inhomogeneity over the volume of a commercially available diamond sample are calculated. With respect to the numerical predictions, a Rabi frequency as high as 34 MHz with an inhomogeneity of 4% over a 1.2 mm × ∅2.5 mm (5.9 mm3 in volume) diamond sample can be achieved for 10 W of input power at room temperature. The antenna prototype is fabricated, and experimental investigations of its characteristics are performed in microwave and optical frequency domains. The circular polarization of the microwave magnetic field with an ellipticity of 0.94 is demonstrated experimentally. The Rabi oscillation frequency and its inhomogeneity are measured, and the results demonstrate a good agreement with the numerically predicted results.

6.
Phys Rev Lett ; 122(19): 193905, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144914

ABSTRACT

All-dielectric resonant nanophotonics lies at the heart of modern optics and nanotechnology due to the unique possibilities to control scattering of light from high-index dielectric nanoparticles and metasurfaces. One of the important concepts of dielectric Mie-resonant nanophotonics is associated with the Kerker effect that drives the unidirectional scattering of light from nanoantennas and Huygens metasurfaces. Here we suggest and demonstrate experimentally a novel effect manifested in the nearly complete simultaneous suppression of both forward and backward scattered fields. This effect is governed by the Fano resonance of an electric dipole and off-resonant quadrupoles, providing necessary phases and amplitudes of the scattered fields to achieve the transverse scattering. We extend this concept to dielectric metasurfaces that demonstrate zero reflection with transverse scattering and strong field enhancement for resonant light filtering, nonlinear effects, and sensing.

7.
Sci Rep ; 7(1): 731, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28389637

ABSTRACT

Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper, we experimentally demonstrate the enhancement of the intensity of the magnetic field in a high-index dielectric cylinder at the proximity of the dipolar Mie resonances by more than two orders of magnitude for both the TE and TM polarizations of the incident wave. We present a complete theoretical explanation of the effect and show that the phenomenon is very general - it should be observed for any high-index particles. The results explain the huge enhancement of nonlinear effects observed recently in optics, suggesting a new landscape for all-dielectric nonlinear nanoscale photonics.

8.
Nat Commun ; 5: 3226, 2014.
Article in English | MEDLINE | ID: mdl-24526135

ABSTRACT

The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

9.
Phys Rev Lett ; 109(8): 083902, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002746

ABSTRACT

We suggest and verify experimentally the concept of functional metamaterials whose properties are remotely controlled by illuminating the metamaterial with a pattern of visible light. In such metamaterials arbitrary gradients of the effective material parameters can be achieved simply by adjusting the profile of illumination. We fabricate such light-tunable microwave metamaterials and demonstrate their unique functionalities for reflection, shaping, and focusing of electromagnetic waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...