Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Wildl Dis ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757149

ABSTRACT

Mycoplasma bovis is an important pathogen of North American bison (Bison bison), associated with high morbidity and mortality epizootics of respiratory and reproductive disease. Despite the significant negative impact on bison health, little is known about the kinetics of disease and the host immune response to infection. To address these questions, a cohort of bison calves was created and serially sampled 5 times, once every 2-3 mo, over a 12-mo period. At each sampling period nasal swab samples were collected and tested by PCR for the presence of M. bovis. Serum samples were also collected and assessed for M. bovis-specific antibodies using both a commercial and an in-house ELISA. Overall, 19/41 bison (46.3%) had positive PCR tests, and 31/41 (75.6%) were seropositive. Over the course of the study, the frequency of PCR-positive nasal swabs and the ELISA scores decreased, although serum samples remained positive for at least 6 mo following the final positive PCR test. Bison were grouped according to results from the in-house ELISA into high-responder (n=7), low-responder (n=5), and seronegative (n=7) groups. Mycoplasma bovis-specific IgG antibody levels were significantly elevated in the high-responder group compared to the low-responder and seronegative groups. The differences were statistically significant for 3/5 sampling periods. A trend toward increased IgG2 levels was observed in the high-responder group. High total IgG responses correlated with a decline in positive PCR tests from nasal swabs. These data provide evidence that a strong humoral response is beneficial and is probably involved in the clearance of M. bovis from bison.

2.
Microbiol Spectr ; 11(6): e0294423, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37850751

ABSTRACT

IMPORTANCE: The Gram-negative coccobacillus Mannheimia haemolytica is a natural inhabitant of the upper respiratory tract in ruminants and the most common bacterial agent involved in bovine respiratory disease complex development. Key virulence factors harbored by M. haemolytica are leukotoxin, lipopolysaccharide, capsule, adhesins, and neuraminidase which are involved in evading innate and adaptive immune responses. In this study, we have shown that CMP-sialic acid synthetase (neuA) is necessary for the incorporation of sialic acid onto the membrane, and inactivation of neuA results in increased phagocytosis and complement-mediated killing of M. haemolytica, thus demonstrating that sialylation contributes to the virulence of M. haemolytica.


Subject(s)
Mannheimia haemolytica , Cattle , Animals , Mannheimia haemolytica/genetics , Mannheimia haemolytica/metabolism , N-Acylneuraminate Cytidylyltransferase/genetics , N-Acylneuraminate Cytidylyltransferase/metabolism , Serogroup , Gene Deletion , Phagocytosis
3.
Front Immunol ; 14: 1040075, 2023.
Article in English | MEDLINE | ID: mdl-36891302

ABSTRACT

Although Human Respiratory Syncytial Virus (HRSV) is a significant cause of severe respiratory disease with high morbidity and mortality in pediatric and elderly populations worldwide there is no licensed vaccine. Bovine Respiratory Syncytial Virus (BRSV) is a closely related orthopneumovirus with similar genome structure and high homology between structural and nonstructural proteins. Like HRSV in children, BRSV is highly prevalent in dairy and beef calves and known to be involved in the etiology of bovine respiratory disease, in addition to being considered an excellent model for HRSV. Commercial vaccines are currently available for BRSV, though improvements in efficacy are needed. The aims of this study were to identify CD4+ T cell epitopes present in the fusion glycoprotein of BRSV, an immunogenic surface glycoprotein that mediates membrane fusion and a major target of neutralizing antibodies. Overlapping peptides representing three regions of the BRSV F protein were used to stimulate autologous CD4+ T cells in ELISpot assays. T cell activation was observed only in cells from cattle with the DRB3*011:01 allele by peptides from AA249-296 of the BRSV F protein. Antigen presentation studies with C-terminal truncated peptides further defined the minimum peptide recognized by the DRB3*011:01 allele. Computationally predicted peptides presented by artificial antigen presenting cells further confirmed the amino acid sequence of a DRB3*011:01 restricted class II epitope on the BRSV F protein. These studies are the first to identify the minimum peptide length of a BoLA-DRB3 class II-restricted epitope in BRSV F protein.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Bovine , Respiratory Syncytial Virus, Human , Animals , Cattle , Humans , Child , Aged , T-Lymphocytes , Epitopes, T-Lymphocyte , CD4-Positive T-Lymphocytes
4.
BMC Res Notes ; 16(1): 4, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658613

ABSTRACT

OBJECTIVE: Mannheimia haemolytica is the primary bacterial pathogen associated with bovine respiratory disease complex (BRDC). While M. haemolytica has been subdivided into 12 capsular serotypes (ST), ST1, ST2 and ST6 are commonly isolated from cattle. More recently, M. haemolytica strains isolated from North American cattle have been classified into genotypes 1 (ST2) and 2 (ST1 and ST6). Of the two genotypes, genotype 1 strains are frequently isolated from healthy animals whereas, genotype 2 strains are predominantly isolated from BRDC animals. However, isolation of both genotypes from pneumonic lung samples can complicate diagnosis. Therefore, the aim of this study was to develop a colorimetric loop-mediated isothermal amplification (LAMP) assay to differentiate M. haemolytica genotypes. RESULTS: The genotype specificity of the LAMP was tested using purified genomic DNA from 22 M. haemolytica strains (10 genotype 1, 12 genotype 2) and strains from four related Pasteurellaceae species; Bibersteinia trehalosi, Mannheimia glucosida, Pasteurella multocida, and Histophilus somni. Genotype 1 (adhesin pseudogene B1) specific-LAMP reactions amplified DNA only from genotype 1 strains while genotype 2 (adhesin G) reactions amplified DNA only from genotype 2 strains. The overall detection sensitivity and specificity of the newly developed colorimetric LAMP assay for each genotype were 100%. The limits of detection of two LAMP assays were 1-100 target gene copies per reaction. LAMP primers designed in this study may help the differential identification of M. haemolytica genotypes 1 and 2.


Subject(s)
Mannheimia haemolytica , Cattle , Animals , Mannheimia haemolytica/genetics , Colorimetry , Interleukin-1 Receptor-Like 1 Protein/genetics , Genotype
5.
mSphere ; 7(3): e0099421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35766502

ABSTRACT

Defining factors that influence spatial and temporal patterns of influenza A virus (IAV) is essential to inform vaccine strain selection and strategies to reduce the spread of potentially zoonotic swine-origin IAV. The relative frequency of detection of the H3 phylogenetic clade 1990.4.a (colloquially known as C-IVA) in U.S. swine declined to 7% in 2017 but increased to 32% in 2019. We conducted phylogenetic and phenotypic analyses to determine putative mechanisms associated with increased detection. We created an implementation of Nextstrain to visualize the emergence, spatial spread, and genetic evolution of H3 IAV in swine, identifying two C-IVA clades that emerged in 2017 and cocirculated in multiple U.S. states. Phylodynamic analysis of the hemagglutinin (HA) gene documented low relative genetic diversity from 2017 to 2019, suggesting clonal expansion. The major H3 C-IVA clade contained an N156H amino acid substitution, but hemagglutination inhibition (HI) assays demonstrated no significant antigenic drift. The minor HA clade was paired with the neuraminidase (NA) clade N2-2002B prior to 2016 but acquired and maintained an N2-2002A in 2016, resulting in a loss of antigenic cross-reactivity between N2-2002B- and -2002A-containing H3N2 strains. The major C-IVA clade viruses acquired a nucleoprotein (NP) of the H1N1pdm09 lineage through reassortment in the replacement of the North American swine-lineage NP. Instead of genetic or antigenic diversity within the C-IVA HA, our data suggest that population immunity to H3 2010.1 along with the antigenic diversity of the NA and the acquisition of the H1N1pdm09 NP gene likely explain the reemergence and transmission of C-IVA H3N2 in swine. IMPORTANCE Genetically distinct clades of influenza A virus (IAV) in swine undermine efforts to control the disease. Swine producers commonly use vaccines, and vaccine strains are selected by identifying the most common hemagglutinin (HA) gene from viruses detected in a farm or a region. In 2019, we identified an increase in the detection frequency of an H3 phylogenetic clade, C-IVA, which was previously circulating at much lower levels in U.S. swine. Our study identified genetic and antigenic factors contributing to its resurgence by linking comprehensive phylodynamic analyses with empirical wet-lab experiments and visualized these evolutionary analyses in a Nextstrain implementation. The contemporary C-IVA HA genes did not demonstrate an increase in genetic diversity or significant antigenic changes. N2 genes did demonstrate antigenic diversity, and the expanding C-IVA clade acquired a nucleoprotein (NP) gene segment via reassortment. Virus phenotype and vaccination targeting prior dominant HA clades likely contributed to the clade's success.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Swine Diseases , Animals , Hemagglutinins/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/physiology , Neuraminidase/genetics , Nucleoproteins/genetics , Phylogeny , Swine
6.
J Virol ; 96(5): e0172521, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34985999

ABSTRACT

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Respiratory Tract Diseases , Animals , Antibodies, Viral , Disease Models, Animal , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza Vaccines/standards , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Respiratory Tract Diseases/immunology , Swine , Vaccines, Inactivated/immunology
7.
J Virol ; 95(20): e0063221, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34379513

ABSTRACT

Two separate introductions of human seasonal N2 neuraminidase genes were sustained in U.S. swine since 1998 (N2-98) and 2002 (N2-02). Herein, we characterized the antigenic evolution of the N2 of swine influenza A virus (IAV) across 2 decades following each introduction. The N2-98 and N2-02 expanded in genetic diversity, with two statistically supported monophyletic clades within each lineage. To assess antigenic drift in swine N2 following the human-to-swine spillover events, we generated a panel of swine N2 antisera against representative N2 and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assay and antigenic cartography. The antigenic distance between swine and human N2 was smallest between human N2 circulating at the time of each introduction and the archetypal swine N2. However, sustained circulation and evolution in swine of the two N2 lineages resulted in significant antigenic drift, and the N2-98 and N2-02 swine N2 lineages were antigenically distinct. Although intralineage antigenic diversity was observed, the magnitude of antigenic drift did not consistently correlate with the observed genetic differences. These data represent the first quantification of the antigenic diversity of neuraminidase of IAV in swine and demonstrated significant antigenic drift from contemporary human seasonal strains as well as antigenic variation among N2 detected in swine. These data suggest that antigenic mismatch may occur between circulating swine IAV and vaccine strains. Consequently, consideration of the diversity of N2 in swine IAV for vaccine selection may likely result in more effective control and aid public health initiatives for pandemic preparedness. IMPORTANCE Antibodies inhibiting the neuraminidase (NA) of IAV reduce clinical disease, virus shedding, and transmission, particularly in the absence of neutralizing immunity against hemagglutinin. To understand antibody recognition of the genetically diverse NA in U.S. swine IAV, we characterized the antigenic diversity of N2 from swine and humans. N2 detected in swine IAV were derived from two distinct human-to-swine spillovers that persisted, are antigenically distinct, and underwent antigenic drift. These findings highlight the need for continued surveillance and vaccine development in swine with increased focus on the NA. Additionally, human seasonal N2 isolated after 2005 were poorly inhibited by representative swine N2 antisera, suggesting a lack of cross-reactive NA antibody-mediated immunity between contemporary swine and human N2. Bidirectional transmission between humans and swine represents a One Health challenge, and determining the correlates of immunity to emerging IAV strains is critical to mitigating zoonotic and reverse-zoonotic transmission.


Subject(s)
Epitopes/immunology , Influenza A virus/genetics , Neuraminidase/genetics , Animals , Antigenic Variation/genetics , Antigens, Viral/immunology , Cross Reactions/immunology , Epitopes/genetics , Evolution, Molecular , Genetic Variation/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/pathogenicity , Influenza, Human/genetics , Neuraminidase/immunology , Neuraminidase/metabolism , Orthomyxoviridae Infections/immunology , Seasons , Swine , Swine Diseases/virology , United States , Virus Shedding/immunology
8.
Transbound Emerg Dis ; 68(6): 3396-3404, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33259672

ABSTRACT

Influenza D viruses (IDV) belong to a new genus in the family Orthomyxoviridae. IDV is the aetiologic agent of acute, mild respiratory disease in ungulate species with agricultural importance (cattle, pigs, sheep, goats, camels, etc.). Despite the initial isolate being of porcine origin, serological data suggest cattle to be the primary host of IDV. The study aims were twofold: elucidating species-specific replication kinetics of IDV in bovine and porcine hosts and defining the interspecies potential with two different IDV strains. Three calves and three pigs were intranasally inoculated with the prototypic strain D/swine/Oklahoma/1334/2017 or a genetically distinct cattle isolate, D/bovine/Texas/72/2017. Two days following infection, three naïve pigs and three naïve calves were co-housed with inoculated calves and pigs, respectively. The species of IDV origin had no effect on virus replication kinetics in the upper respiratory tract of inoculated calves and pigs; similar shedding profiles were observed for each species and virus. However, interspecies transmission was found to be associated with virus origin species; D/bovine/Texas/72/2017 and D/swine/Oklahoma/1334/2017 were directly transmitted only to contact calves or pigs, respectively. Even so, transmission efficiency was higher for calves compared to pigs. Together, these data show that cattle and pigs are permissive for IDV replication, but IDV transmission may be species dependent. Host-specific mutations likely influenced transmission efficiencies between agriculturally important mammalian species.


Subject(s)
Cattle Diseases , Orthomyxoviridae Infections , Orthomyxoviridae , Sheep Diseases , Swine Diseases , Thogotovirus , Animals , Cattle , Orthomyxoviridae Infections/veterinary , Sheep , Swine , Virus Replication
9.
J Virol ; 94(16)2020 07 30.
Article in English | MEDLINE | ID: mdl-32522849

ABSTRACT

Influenza A viruses (IAV) sporadically transmit from swine to humans, typically associated with agricultural fairs in the United States. A human seasonal H3 virus from the 2010-2011 IAV season was introduced into the U.S. swine population and termed H3.2010.1 to differentiate it from the previous swine H3 virus. This H3N2 lineage became widespread in the U.S. commercial swine population, subsequently spilling over into exhibition swine, and caused a majority of H3N2 variant (H3N2v) cases in humans in 2016 and 2017. A cluster of human H3N2v cases were reported at an agricultural fair in 2017 in Ohio, where 2010.1 H3N2 IAV was concurrently detected in exhibition swine. Genomic analysis showed that the swine and human isolates were nearly identical. In this study, we evaluated the propensity of a 2010.1 H3N2 IAV (A/swine/Ohio/A01354299/2017 [sw/OH/2017]) isolated from a pig in the agricultural fair outbreak to replicate in ferrets and transmit from swine to ferret. sw/OH/2017 displayed robust replication in the ferret respiratory tract, causing slight fever and moderate weight loss. Further, sw/OH/2017 was capable of efficient respiratory droplet transmission from infected pigs to contact ferrets. These findings establish a model for evaluating the propensity of swine IAV to transmit from pig to ferret as a measure of risk to the human population. The identification of higher-risk swine strains can then be targeted for control measures to limit the dissemination at human-swine interfaces to reduce the risk of zoonotic infections and to inform pandemic planning.IMPORTANCE A recently emerged lineage of human-like H3N2 (H3.2010.1) influenza A virus (IAV) from swine has been frequently detected in commercial and exhibition swine in recent years and has been associated with H3N2 variant cases in humans from 2016 and 2017. To demonstrate a model for characterizing the potential for zoonotic transmission associated with swine IAV, we performed an in vivo study of transmission between pigs infected with an H3.2010.1 H3N2 IAV and aerosol contact ferrets. The efficient interspecies transmission demonstrated for the H3.2010.1 IAV in swine emphasizes the need for further characterization of viruses circulating at the swine-human interface for transmission potential prior to human spillover and the development and implementation of more robust vaccines and control strategies to mitigate human exposure to higher-risk swine strains.


Subject(s)
Influenza A Virus, H3N2 Subtype/metabolism , Orthomyxoviridae Infections/transmission , Zoonoses/transmission , Aerosols , Animals , Cross Reactions/immunology , Ferrets/virology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A virus/metabolism , Influenza A virus/pathogenicity , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Swine/virology , Swine Diseases/virology , United States , Zoonoses/virology
10.
Methods Mol Biol ; 2123: 335-344, 2020.
Article in English | MEDLINE | ID: mdl-32170699

ABSTRACT

The neuraminidase (NA) of influenza A viruses (IAV) is a structurally and antigenically important envelope glycoprotein. There are eleven known subtypes of NA of which two, N1 and N2, circulate in swine. The sialidase activity of NA is required for the release of nascent virus particles from infected cell membranes and inhibition of NA enzymatic activity can significantly reduce virus titers and duration of infection. Efforts to improve IAV vaccine technology in humans have focused on the generation of neuraminidase inhibiting (NAI) antibodies and should be considered in swine as well. The enzyme-linked lectin assay (ELLA) conducted in 96-well plates has enabled high-throughput analysis of serum samples for NAI antibody titers. Through the use of reverse genetics, custom antigen panels and antisera can be generated to encompass the antigenically diverse population of NA that circulate in swine. The ELLA is a robust method to assess NAI antibody titers and characterize the antigenic difference between NA antigens.


Subject(s)
Antibodies, Viral/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Influenza A virus/enzymology , Influenza A virus/immunology , Lectins/metabolism , Neuraminidase/antagonists & inhibitors , Animals , Antibodies, Viral/blood , Antigens, Viral/immunology , Bronchoalveolar Lavage Fluid/virology , Fetuins/metabolism , Neuraminidase/metabolism , Swine/blood , Swine/immunology , Swine/virology
11.
Emerg Infect Dis ; 25(11): 2074-2080, 2019 11.
Article in English | MEDLINE | ID: mdl-31625836

ABSTRACT

Influenza D virus has been detected predominantly in cattle from several countries. In the United States, regional and state seropositive rates for influenza D have previously been reported, but little information exists to evaluate national seroprevalence. We performed a serosurveillance study with 1,992 bovine serum samples collected across the country in 2014 and 2015. We found a high overall seropositive rate of 77.5% nationally; regional rates varied from 47.7% to 84.6%. Samples from the Upper Midwest and Mountain West regions showed the highest seropositive rates. In addition, seropositive samples were found in 41 of the 42 states from which cattle originated, demonstrating that influenza D virus circulated widely in cattle during this period. The distribution of influenza D virus in cattle from the United States highlights the need for greater understanding about pathogenesis, epidemiology, and the implications for animal health.


Subject(s)
Cattle Diseases/epidemiology , Cattle Diseases/virology , Orthomyxoviridae Infections/veterinary , Thogotovirus , Animals , Cattle , Cattle Diseases/history , Female , Genes, Viral , History, 21st Century , Male , Phylogeny , Seroepidemiologic Studies , Thogotovirus/classification , Thogotovirus/genetics , Thogotovirus/immunology , United States/epidemiology
12.
J Virol ; 92(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30185589

ABSTRACT

Influenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266-8280, 2016, https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCE Due to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.


Subject(s)
Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/veterinary , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology , Animals , Cross Protection/immunology , Influenza A Virus, H3N2 Subtype/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Respiratory System/immunology , Respiratory System/virology , Swine , Virus Replication/immunology
13.
Vaccine ; 36(8): 1101-1107, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29366707

ABSTRACT

Influenza A virus (IAV) in swine constitutes a major economic burden for producers as well as a potential threat to public health. Whole inactivated virus vaccines (WIV) are the predominant countermeasure employed to control IAV in swine herds in the United States despite the superior protection, and diminished adverse effects, induced by live attenuated influenza vaccines (LAIV). A major hurdle for the development of LAIV exists in achieving the proper level of attenuation while maintaining immunogenicity. Using Synthetic Attenuated Virus Engineering (SAVE) to introduce codon-pair bias de-optimization (CPBD) into the hemagglutinin (HA) and neuraminidase (NA) gene segments of pandemic H1N1 IAV, a novel LAIV was produced and evaluated for attenuation, immunogenicity, and efficacy in pigs. The CPBD LAIV induced inappreciable pathology following intranasal administration yet induced robust serum and mucosal antibody titers. CPBD LAIV vaccinated pigs challenged with wild-type virus showed protection from disease and virus detection, highlighted by the absence of detectable virus titers in the nasal passages and lungs. These results demonstrate the efficacy of a LAIV designed by SAVE codon de-optimization in pigs, providing support for the continued development of CPBD LAIV for use in swine.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Swine Diseases/prevention & control , Vaccination/veterinary , Administration, Intranasal , Animals , Antibodies, Viral/blood , Codon/genetics , Hemagglutinins/genetics , Immunogenicity, Vaccine , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Lung/virology , Neuraminidase/genetics , Swine , Treatment Outcome , United States , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
14.
Influenza Other Respir Viruses ; 11(5): 464-470, 2017 09.
Article in English | MEDLINE | ID: mdl-28688206

ABSTRACT

BACKGROUND: In the fall of 2014, highly pathogenic avian influenza (HPAI) subtype H5N8 clade 2.3.4.4 was introduced into North America by migrating waterfowl from Asia where, through reassortment, novel HPAI H5N2 and H5N1 viruses emerged. OBJECTIVES: Assess the susceptibility of pigs to HPAI H5N1, H5N2, and H5N8 clade 2.3.3.3 from North America. METHODS: Pigs and trachea explants were inoculated with a representative panel of H5NX clade 2.3.4.4 HPAI viruses from North America. Nasal swabs, BALF, and sera were collected to assess replication and transmission in challenged and direct contact pigs by RRT-PCR, virus isolation, hemagglutination inhibition, and ELISA. RESULTS: Limited virus replication was restricted to the lower respiratory tract of challenged pigs, though absent in the nasal passages and trachea cultures, as determined by RRT-PCR in all samples. Seroconversion of inoculated pigs was detected by NP ELISA but was not reliably detected by antigen-specific hemagglutination inhibition. Boost with adjuvanted virus was required for the production of neutralizing antibodies to assess cross-reactivity between wild-type avian strains. All RRT-PCR and serology tests were negative for contact animals indicating a failure of transmission from primary inoculated pigs. CONCLUSIONS: H5NX clade 2.3.4.4 strains can replicate in the lower respiratory tract of swine upon high titer inoculation, though appear to be incapable of replication in swine nasal epithelium in vivo or ex vivo in trachea explants in culture. Infected pigs did not produce high levels of serum antibodies following infection. Collectively, our data show HPAI H5NX clade 2.3.4.4 viruses to be poorly adapted for replication and transmission in swine.


Subject(s)
Influenza A virus/pathogenicity , Orthomyxoviridae Infections/veterinary , Swine Diseases/transmission , Swine Diseases/virology , Trachea/virology , Virus Replication , Animals , Antibodies, Neutralizing/blood , Asia/epidemiology , Birds , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A Virus, H5N2 Subtype/physiology , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/physiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/physiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , North America/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory System/virology , Swine
15.
Emerg Microbes Infect ; 6(4): e17, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28400591

ABSTRACT

Subtype H6 influenza A viruses (IAVs) are commonly detected in wild birds and domestic poultry and can infect humans. In 2010, a H6N6 virus emerged in southern China, and since then, it has caused sporadic infections among swine. We show that this virus binds to α2,6-linked and α2,3-linked sialic acids. Mutations at residues 222 (alanine to valine) and 228 (glycine to serine) of the virus hemagglutinin (HA) affected its receptor-binding properties. Experiments showed that the virus has limited transmissibility between ferrets through direct contact or through inhalation of infectious aerosolized droplets. The internal genes of the influenza A(H1N1)pdm09 virus, which is prevalent in swine worldwide, increases the replication efficiency of H6N6 IAV in the lower respiratory tract of ferrets but not its transmissibility between ferrets. These findings suggest H6N6 swine IAV (SIV) currently poses a moderate risk to public health, but its evolution and spread should be closely monitored.


Subject(s)
Influenza A virus/isolation & purification , Influenza A virus/physiology , Orthomyxoviridae Infections/veterinary , Sialic Acids/metabolism , Swine Diseases/transmission , Swine Diseases/virology , Virus Attachment , Animals , China , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/pathogenicity , Mutation, Missense , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Protein Binding , Receptors, Virus/metabolism , Swine
16.
PLoS Pathog ; 13(3): e1006276, 2017 03.
Article in English | MEDLINE | ID: mdl-28282440

ABSTRACT

A pandemic-capable influenza virus requires a hemagglutinin (HA) surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5) and human and ferret (pH ≤5.5) species. Using an early 2009 pandemic H1N1 (pH1N1) virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5), HA1-Y17H (pH 6.0), and HA2-R106K (pH 5.3). All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0) acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like) HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Orthomyxoviridae Infections/transmission , Animals , Ferrets/virology , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Protein Stability , Real-Time Polymerase Chain Reaction , Swine/virology
17.
JCI Insight ; 1(10)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27482543

ABSTRACT

Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness between the swine H3N2v virus and previously circulating human strains, consistent with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the human population, where they had not been circulating, as H3N2v about a decade later. The data also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure to human seasonal strains from the 1990s.

18.
mSphere ; 1(2)2016.
Article in English | MEDLINE | ID: mdl-27303732

ABSTRACT

Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses.

19.
Emerg Infect Dis ; 21(10): 1834-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26402228

ABSTRACT

To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012-September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses.


Subject(s)
Epidemiological Monitoring , Influenza A virus/pathogenicity , Livestock/virology , Orthomyxoviridae Infections/veterinary , Swine Diseases/epidemiology , Swine/virology , Animals , United States/epidemiology
20.
Nat Commun ; 6: 6553, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25850788

ABSTRACT

Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity. In contrast, diversity is tightly restricted in infected ferrets, limiting further adaptation to a fully transmissible form. Airborne transmission in ferrets is accompanied by the mutations in PB1, NP and NA genes that reduce viral polymerase and neuraminidase activity. Therefore, while A(H7N9) virus can infect mammals, further adaptation appears to incur a fitness cost. Our results reveal that a tight genetic bottleneck during avian-to-mammalian transmission is a limiting factor in A(H7N9) influenza virus adaptation to mammals. This previously unrecognized biological mechanism limiting species jumps provides a measure of adaptive potential and may serve as a risk assessment tool for pandemic preparedness.


Subject(s)
Genetic Variation , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology , Orthomyxoviridae Infections/virology , RNA, Viral/genetics , Adaptation, Physiological , Animals , Asymptomatic Infections , Chickens , Chlorocebus aethiops , Dogs , Ferrets , HEK293 Cells , Humans , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza in Birds/transmission , Influenza, Human , Madin Darby Canine Kidney Cells , Multiplex Polymerase Chain Reaction , Mutation , Neuraminidase/genetics , Nucleocapsid Proteins , Orthomyxoviridae Infections/transmission , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells , Viral Core Proteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...