Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(6): 644, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149506

ABSTRACT

Clean air is the precursor to a healthy life. Air quality is an issue that has been getting under its well-deserved spotlight in the last few years. From a remote sensing point of view, the first Copernicus mission with the main purpose of monitoring the atmosphere and tracking air pollutants, the Sentinel-5P TROPOMI mission, has been widely used worldwide. Particulate matter of a diameter smaller than 2.5 and 10 µm (PM2.5 and PM10) significantly determines air quality. Still, there are no available satellite sensors that allow us to track them remotely with high accuracy, but only using ground stations. This research aims to estimate PM2.5 and PM10 using Sentinel-5P and other open-source remote sensing data available on the Google Earth Engine (GEE) platform for heating (December 2021, January, and February 2022) and non-heating seasons (June, July, and August 2021) on the territory of the Republic of Croatia. Ground stations of the National Network for Continuous Air Quality Monitoring were used as a starting point and as ground truth data. Raw hourly data were matched to remote sensing data, and seasonal models were trained at the national and regional scale using machine learning. The proposed approach uses a random forest algorithm with a percentage split of 70% and gives moderate to high accuracy regarding the temporal frame of the data. The mapping gives us visual insight between the ground and remote sensing data and shows the seasonal variations of PM2.5 and PM10. The results showed that the proposed approach and models could efficiently estimate air quality.


Subject(s)
Air Pollutants , Air Pollution , Remote Sensing Technology , Environmental Monitoring/methods , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis
2.
Model Earth Syst Environ ; : 1-15, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36820101

ABSTRACT

Globally, the COVID-19 pandemic is a top-level public health concern. This paper attempts to identify the COVID-19 pandemic in Qom and Mazandaran provinces, Iran using spatial analysis approaches. This study was based on secondary data of confirmed cases and deaths from February 3, 2020, to late October 2021, in two Qom and Mazandaran provinces from hospitals and the website of the National Institute of Health. In this paper, three geographical models in ArcGIS 10.8.1 were utilized to analyze and evaluate COVID-19, including geographic weight regression (GWR), ordinary least squares (OLS), and spatial autocorrelation (Moran I). The results from this study indicate that the rate of scattering of confirmed cases for Qom province for the period was 44.25%, while the rate of dispersal of the deaths was 4.34%. Based on the GWR and OLS model, Moran's statistics demonstrated that confirmed cases, deaths, and recovered followed a clustering pattern during the study period. Moran's Z-score for all three indicators of confirmed cases, deaths, and recovered was confirmed to be greater than 2.5 (95% confidence level) for both GWR and OLS models. The spatial distribution of indicators of confirmed cases, deaths, and recovered based on the GWR model has been more scattered in the northwestern and southwestern cities of Qom province. Whereas the spatial distribution of the recoveries of the COVID-19 pandemic in Qom province was 61.7%, the central regions of this province had the highest spread of recoveries. The spatial spread of the COVID-19 pandemic from February 3, 2020, to October 2021 in Mazandaran province was 35.57%, of which 2.61% died, according to information published by the COVID-19 pandemic headquarters. Most confirmed cases and deaths are scattered in the north of this province. The ordinary least squares model results showed that the spatial dispersion of recovered people from the COVID-19 pandemic is more significant in the central and southern regions of Mazandaran province. The Z-score for the deaths Index is more significant than 14.314. The results obtained from this study and the information published by the National Headquarters for the fight against the COVID-19 pandemic showed that tourism and pilgrimages are possible factors for the spatial distribution of the COVID-19 pandemic in Qom and Mazandaran provinces. The spatial information obtained from these modeling approaches could provide general insights to authorities and researchers for further targeted investigations and policies in similar circumcises.

3.
Environ Monit Assess ; 194(10): 762, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36087153

ABSTRACT

With the increased urbanization, the rise of the manufacturing industry, and the use of fossil fuels, poor air quality is one of the most serious and pressing problems worldwide. The COVID-19 outbreak prompted absolute lockdowns in the majority of countries throughout the world, posing new research questions. The study's goals were to analyze air and temperature parameters in Turkey across various land cover classes and to investigate the correlation between air and temperature. For that purpose, remote sensing data from MODIS and Sentinel-5P TROPOMI were used from 2019 to 2021 over Turkey. A large amount of data was processed and analyzed in Google Earth Engine (GEE). Results showed a significant decrease in NO2 in urban areas. The findings can be used in long-term strategies for lowering global air pollution. Future research should look at similar investigations in various study sites and evaluate changes in air metrics over additional classes.


Subject(s)
Air Pollution , COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Turkey/epidemiology
4.
Sci Total Environ ; 767: 144330, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33434848

ABSTRACT

The 2019 pandemic of Severe Acute Respiratory Syndrome-Corona Virus Diseases (COVID-19) has posed a substantial threat to public health and major global economic losses. The Northern Emirates of the United Arab Emirates (NEUAE) had imposed intense preventive lockdown measures. On the first of April 2020, a lockdown was implemented. It was assumed, due to lower emissions, that the air quality and Surface Urban Heat Island Intensity (SUHII) had been strengthened significantly. In this research, three parameters for Nitrogen Dioxide (NO2), Aerosol Optical Depth (AOD), and SUHII variables were examined through the NEUAE. we evaluated the percentage of the change in these parameters as revealed by satellite data for 2 cycles in 2019 (March 1st to June 30th) and 2020 (March 1st to June 30th). The core results showed that during lockdown periods, the average of NO2, AOD, and SUHII levels declined by 23.7%, 3.7%, and 19.2%, respectively, compared to the same period in 2019. Validation for results demonstrates a high agreement between the predicted and measured values. The agreement was as high as R2=0.7, R2=0.6, and R2=0.68 for NO2, AOD, and night LST, respectively, indicating significant positive linear correlations. The current study concludes that due to declining automobile and industrial emissions in the NEUAE, the lockdown initiatives substantially lowered NO2, AOD, and SUHII. In addition, the aerosols did not alter significantly since they are often linked to the natural occurrence of dust storms throughout this time of the year. The pandemic is likely to influence several policy decisions to introduce strategies to control air pollution and SUHII. Lockdown experiences may theoretically play a key role in the future as a possible solution for air pollution and SUHII abatement.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Animals , Cities , Communicable Disease Control , Environmental Monitoring , Hot Temperature , Humans , Islands , SARS-CoV-2 , United Arab Emirates
SELECTION OF CITATIONS
SEARCH DETAIL
...