Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37461455

ABSTRACT

Mon1a has been shown to function in the endolysosomal pathway functioning in the Mon1-Ccz1 complex and it also acts in the secretory pathway where it interacts with dynein and affects ER to Golgi traffic. Here we show that Mon1a is also required for maintenance of the Golgi apparatus. We identified the F-BAR protein FCHO2 as a Mon1a-interacting protein by both yeast two-hybrid analysis and co-immunoprecipitation. siRNA-dependent reductions in Mon1a or FCHO2 resulted in Golgi fragmentation. Membrane trafficking through the secretory apparatus in FCHO2-depleted cells was unaltered, however, reduction of FCHO2 affected the uniform distribution of Golgi enzymes necessary for carbohydrate modification. Fluorescence recovery after photobleaching analysis showed that the Golgi ministacks in Mon1a- or FCHO2-silenced cells did not exchange resident membrane proteins. The effect of FCHO2 silencing on Golgi structure was partially cell cycle-dependent and required mitosis-dependent Golgi fragmentation, whereas the effect of Mon1a-silencing on Golgi disruption was not cell cycle-dependent. mCherry-FCHO2 transiently colocalized on Golgi structures independent of Mon1a. These findings suggest that Mon1a has functions throughout the secretory pathway including interacting with dynein at the ER-Golgi interface in vesicle formation and then interacting with FCHO2 at the Golgi to generate lateral links between ministacks, thus creating Golgi ribbons.

2.
J Biol Chem ; 295(32): 11002-11020, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32518166

ABSTRACT

Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2-/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2-/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1-/-/Mfrn2-/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.


Subject(s)
Cation Transport Proteins/physiology , Cell Proliferation/physiology , Liver Regeneration/physiology , Membrane Transport Proteins/physiology , Animals , Homeostasis , Iron/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism
3.
J Biol Chem ; 295(6): 1716-1726, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31896574

ABSTRACT

Budding yeast (Saccharomyces cerevisiae) responds to low cytosolic iron by up-regulating the expression of iron import genes; iron import can reflect iron transport into the cytosol or mitochondria. Mmt1 and Mmt2 are nuclearly encoded mitochondrial proteins that export iron from the mitochondria into the cytosol. Here we report that MMT1 and MMT2 expression is transcriptionally regulated by two pathways: the low-iron-sensing transcription factor Aft1 and the oxidant-sensing transcription factor Yap1. We determined that MMT1 and MMT2 expression is increased under low-iron conditions and decreased when mitochondrial iron import is increased through overexpression of the high-affinity mitochondrial iron importer Mrs3. Moreover, loss of iron-sulfur cluster synthesis induced expression of MMT1 and MMT2 We show that exposure to the oxidant H2O2 induced MMT1 expression but not MMT2 expression and identified the transcription factor Yap1 as being involved in oxidant-mediated MMT1 expression. We defined Aft1- and Yap1-dependent transcriptional sites in the MMT1 promoter that are necessary for low-iron- or oxidant-mediated MMT1 expression. We also found that the MMT2 promoter contains domains that are important for regulating its expression under low-iron conditions, including an upstream region that appears to partially repress expression under low-iron conditions. Our findings reveal that MMT1 and MMT2 are induced under low-iron conditions and that the low-iron regulator Aft1 is required for this induction. We further uncover an Aft1-binding site in the MMT1 promoter sufficient for inducing MMT1 transcription and identify an MMT2 promoter region required for low iron induction.


Subject(s)
Cation Transport Proteins/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , Cation Transport Proteins/metabolism , Gene Expression Regulation, Fungal , Iron/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptional Activation
4.
J Biol Chem ; 293(51): 19797-19811, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30366982

ABSTRACT

Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.


Subject(s)
Erythroid Cells/metabolism , Erythropoietin/metabolism , Ferrochelatase/metabolism , Heme/biosynthesis , Iron/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Erythroid Cells/cytology , Erythropoiesis , HEK293 Cells , Humans , Membrane Proteins/chemistry , Mice , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/chemistry , Protein Transport
5.
J Biol Chem ; 293(27): 10782-10795, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29773647

ABSTRACT

Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.


Subject(s)
Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sterols/metabolism , Homeostasis , Iron-Sulfur Proteins/genetics , Mitochondrial Proteins/genetics , Oxidation-Reduction , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
6.
J Biol Chem ; 292(37): 15577-15586, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28760824

ABSTRACT

The budding yeast Saccharomyces cerevisiae stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the CCC1 gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of CCC1 also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate CCC1 transcription and iron resistance. We found that SNF1 deletion acts synergistically with YAP5 deletion to regulate CCC1 transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of SNF4, which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by SIT1, SIT2, and GAL83 decreased both CCC1 transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated CCC1 transcription. Of note, SNF1 deletion in combination with MSN2 and MSN4 deletion resulted in additive effects on CCC1 transcription, suggesting that other activators contribute to the regulation of CCC1 transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity.


Subject(s)
Cation Transport Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Transcription Factors/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Biological Transport/drug effects , Cation Transport Proteins/genetics , Gene Deletion , Gene Expression Regulation, Fungal/drug effects , Iron/metabolism , Iron/toxicity , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Viability , Mutation , Oxidants/metabolism , Oxidants/toxicity , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction/drug effects , Transcription Factors/genetics , Vacuoles/metabolism
7.
J Biol Chem ; 292(39): 16284-16299, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28808058

ABSTRACT

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Enzymologic , Heme/biosynthesis , Zebrafish Proteins/metabolism , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Amino Acid Motifs , Amino Acid Substitution , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/metabolism , Fanconi Anemia Complementation Group Proteins , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Microinjections , Morpholinos/metabolism , Mutation , RNA Interference , RNA, Small Interfering , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
8.
Blood Cells Mol Dis ; 65: 38-40, 2017 06.
Article in English | MEDLINE | ID: mdl-28460265

ABSTRACT

In an iron deficient child, oral iron repeatedly failed to improve the condition. Whole exome sequencing identified one previously reported plus two novel mutation in the TMPRSS6 gene, with no mutations in other iron-associated genes. We propose that these mutations result in a novel variety of iron-refractory iron deficiency anemia.


Subject(s)
Anemia, Iron-Deficiency/genetics , Membrane Proteins/genetics , Mutation , Serine Endopeptidases/genetics , Alleles , Amino Acid Substitution , Anemia, Iron-Deficiency/diagnosis , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/metabolism , Biomarkers , Blood Cell Count , DNA Mutational Analysis , Erythrocyte Indices , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Infant , Whole Genome Sequencing
9.
Elife ; 62017 05 29.
Article in English | MEDLINE | ID: mdl-28553927

ABSTRACT

Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development.


Subject(s)
A Kinase Anchor Proteins/metabolism , Erythropoietin/metabolism , GATA1 Transcription Factor/metabolism , Heme/biosynthesis , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Mice , Mitochondrial Membranes/metabolism , Zebrafish
11.
J Clin Invest ; 124(10): 4294-304, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25157825

ABSTRACT

The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.


Subject(s)
Erythropoiesis/genetics , Heme/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Anemia/metabolism , Animals , Cell Line , Erythroid Cells/metabolism , Gene Expression Regulation , Hemoglobins/metabolism , Liver/embryology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/metabolism , Porphyrins/metabolism , Protoporphyrins/metabolism , RNA, Small Interfering/metabolism
12.
J Biol Chem ; 289(24): 17132-41, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24798331

ABSTRACT

Mmt1 and Mmt2 are highly homologous yeast members of the cation diffusion facilitator transporter family localized to mitochondria. Overexpression of MMT1/2 led to changes in cellular metal homeostasis (increased iron sensitivity, decreased cobalt sensitivity, increased sensitivity to copper), oxidant generation, and increased sensitivity to H2O2. The phenotypes due to overexpression of MMT1&2 were similar to that seen in cells with deletions in MRS3 and MRS4, genes that encode the mitochondrial iron importers. Overexpression of MMT1&2 resulted in induction of the low iron transcriptional response, similar to that seen in Δmrs3Δmr4 cells. This low iron transcriptional response was suppressed by deletion of CCC1, the gene that encodes the vacuolar iron importer. Measurement of the activity of the iron-dependent gentisate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans expressed in yeast cytosol, showed that changes in Mmt1/2 levels affected cytosol iron concentration even in the absence of Ccc1. Overexpression of MMT1 resulted in increased cytosolic iron whereas deletion of MMT1/MMT2 led to decreased cytosolic iron. These results support the hypothesis that Mmt1/2 function as mitochondrial iron exporters.


Subject(s)
Cation Transport Proteins/metabolism , Iron/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cation Transport Proteins/genetics , Cytoplasm/metabolism , Homeostasis , Ion Transport , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
13.
PLoS Pathog ; 10(1): e1003901, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497831

ABSTRACT

Leishmania parasites infect macrophages, cells that play an important role in organismal iron homeostasis. By expressing ferroportin, a membrane protein specialized in iron export, macrophages release iron stored intracellularly into the circulation. Iron is essential for the intracellular replication of Leishmania, but how the parasites compete with the iron export function of their host cell is unknown. Here, we show that infection with Leishmania amazonensis inhibits ferroportin expression in macrophages. In a TLR4-dependent manner, infected macrophages upregulated transcription of hepcidin, a peptide hormone that triggers ferroportin degradation. Parasite replication was inhibited in hepcidin-deficient macrophages and in wild type macrophages overexpressing mutant ferroportin that is resistant to hepcidin-induced degradation. Conversely, intracellular growth was enhanced by exogenously added hepcidin, or by expression of dominant-negative ferroportin. Importantly, dominant-negative ferroportin and macrophages from flatiron mice, a mouse model for human type IV hereditary hemochromatosis, restored the infectivity of mutant parasite strains defective in iron acquisition. Thus, inhibition of ferroportin expression is a specific strategy used by L. amazonensis to inhibit iron export and promote their own intracellular growth.


Subject(s)
Iron/metabolism , Leishmania/metabolism , Leishmaniasis/metabolism , Macrophages/metabolism , Animals , Biological Transport, Active/genetics , Cation Transport Proteins/biosynthesis , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Disease Models, Animal , Gene Expression Regulation/genetics , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis/parasitology , Hemochromatosis/pathology , Hepcidins/biosynthesis , Hepcidins/genetics , Humans , Leishmaniasis/genetics , Leishmaniasis/pathology , Macrophages/parasitology , Macrophages/pathology , Mice , Mice, Knockout , Mutation
14.
J Biol Chem ; 289(11): 7835-43, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24509859

ABSTRACT

Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1(+/gt);Irp1(-/-) erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5'-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1(gt/gt) cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1(gt/gt) cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.


Subject(s)
5-Aminolevulinate Synthetase/metabolism , Gene Expression Regulation , Iron Regulatory Protein 1/metabolism , Membrane Transport Proteins/metabolism , Porphyrias/metabolism , Animals , Blastocyst/cytology , Cell Differentiation , Cell Line, Tumor , Female , Genotype , HEK293 Cells , Heme/chemistry , Humans , Iron/chemistry , Iron-Sulfur Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Biosynthesis , Protoporphyrins/metabolism , Zebrafish
15.
Curr Biol ; 23(15): R642-6, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23928078

ABSTRACT

The facile ability of iron to gain and lose electrons has made iron an important participant in a wide variety of biochemical reactions. Binding of ligands to iron modifies its redox potential, thereby permitting iron to transfer electrons with greater or lesser facility. The ability to transfer electrons, coupled with its abundance, as iron is the fourth most abundant mineral in the earth's crust, have contributed to iron being an element required by almost all species in the six kingdoms of life. Iron became an essential element for both Eubacteria and Archeabacteria in the early oxygen-free stages of the earth's evolution. With the advent of an oxygen-rich environment, the redox properties of iron made it extremely useful, as much of iron utilization in eukaryotes is focused on oxygen metabolism, either as an oxygen carrier or as an electron carrier that can facilitate oxygen-based chemistry.


Subject(s)
Biological Transport , Iron/metabolism , Animals , Bacteria/metabolism , Biological Evolution , Enzymes/chemistry , Enzymes/metabolism , Eukaryotic Cells/metabolism , Hemeproteins/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Organelles/metabolism , Vertebrates/metabolism
16.
Cell Metab ; 17(3): 343-52, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23416069

ABSTRACT

Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.


Subject(s)
Anemia/genetics , Iron/metabolism , Receptors, Transferrin/metabolism , Sorting Nexins/metabolism , Analysis of Variance , Animals , Blotting, Western , Cells, Cultured , Fluorescein-5-isothiocyanate , Fluorescent Antibody Technique , Gene Silencing , Mice , Sorting Nexins/genetics , Zebrafish
17.
Curr Biol ; 23(22): 2325, 2013 11 18.
Article in English | MEDLINE | ID: mdl-30001585
18.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23135403

ABSTRACT

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Subject(s)
Erythroblasts/metabolism , Erythropoiesis , Heme/biosynthesis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteins/metabolism , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Animals , Disease Models, Animal , Erythroblasts/cytology , Ferrochelatase/metabolism , Genetic Complementation Test , Humans , Hydrogen-Ion Concentration , Mice , Mitochondria/pathology , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Oxidation-Reduction , Proteins/genetics , Zebrafish/metabolism , ATPase Inhibitory Protein
19.
J Biol Chem ; 287(42): 35709-35721, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22915593

ABSTRACT

Yeast respond to increased cytosolic iron by activating the transcription factor Yap5 increasing transcription of CCC1, which encodes a vacuolar iron importer. Using a genetic screen to identify genes involved in Yap5 iron sensing, we discovered that a mutation in SSQ1, which encodes a mitochondrial chaperone involved in iron-sulfur cluster synthesis, prevented expression of Yap5 target genes. We demonstrated that mutation or reduced expression of other genes involved in mitochondrial iron-sulfur cluster synthesis (YFH1, ISU1) prevented induction of the Yap5 response. We took advantage of the iron-dependent catalytic activity of Pseudaminobacter salicylatoxidans gentisate 1,2-dioxygenase expressed in yeast to measure changes in cytosolic iron. We determined that reductions in iron-sulfur cluster synthesis did not affect the activity of cytosolic gentisate 1,2-dioxygenase. We show that loss of activity of the cytosolic iron-sulfur cluster assembly complex proteins or deletion of cytosolic glutaredoxins did not reduce expression of Yap5 target genes. These results suggest that the high iron transcriptional response, as well as the low iron transcriptional response, senses iron-sulfur clusters.


Subject(s)
Basic-Leucine Zipper Transcription Factors/biosynthesis , Gene Expression Regulation, Fungal/physiology , Iron/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism , Transcription, Genetic/physiology , Basic-Leucine Zipper Transcription Factors/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Oxidation-Reduction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
20.
J Proteomics ; 76 Spec No.: 10-27, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-22835775

ABSTRACT

Macrophages play a critical role at the crossroad between iron metabolism and immunity, being able to store and recycle iron derived from the phagocytosis of senescent erythrocytes. The way by which macrophages manage non-heme iron at physiological concentration is still not fully understood. We investigated protein changes in mouse bone marrow macrophages incubated with ferric ammonium citrate (FAC 10 µM iron). Differentially expressed spots were identified by nano RP-HPLC-ESI-MS/MS. Transcriptomic, metabolomics and western immunoblotting analyses complemented the proteomic approach. Pattern analysis was also used for identifying networks of proteins involved in iron homeostasis. FAC treatment resulted in higher abundance of several proteins including ferritins, cytoskeleton related proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at the membrane level, vimentin, arginase, galectin-3 and macrophage migration inhibitory factor (MIF). Interestingly, GAPDH has been recently proposed to act as an alternative transferrin receptor for iron acquisition through internalization of the GAPDH-transferrin complex into the early endosomes. FAC treatment also induced the up-regulation of oxidative stress-related proteins (PRDX), which was further confirmed at the metabolic level (increase in GSSG, 8-isoprostane and pentose phosphate pathway intermediates) through mass spectrometry-based targeted metabolomics approaches. This study represents an example of the potential usefulness of "integarated omics" in the field of iron biology, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions. This article is part of a Special Issue entitled: Integrated omics.


Subject(s)
Bone Marrow Cells/metabolism , Gene Expression Regulation/physiology , Iron/metabolism , Macrophages/metabolism , Metabolome/physiology , Proteome/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Cells, Cultured , Ferric Compounds/pharmacology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Iron/immunology , Macrophages/cytology , Macrophages/immunology , Metabolome/drug effects , Metabolomics/methods , Mice , Proteome/drug effects , Proteome/immunology , Proteomics/methods , Quaternary Ammonium Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...