Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 33(11): 1630-1638, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28108445

ABSTRACT

MOTIVATION: In recent years, molecular species delimitation has become a routine approach for quantifying and classifying biodiversity. Barcoding methods are of particular importance in large-scale surveys as they promote fast species discovery and biodiversity estimates. Among those, distance-based methods are the most common choice as they scale well with large datasets; however, they are sensitive to similarity threshold parameters and they ignore evolutionary relationships. The recently introduced "Poisson Tree Processes" (PTP) method is a phylogeny-aware approach that does not rely on such thresholds. Yet, two weaknesses of PTP impact its accuracy and practicality when applied to large datasets; it does not account for divergent intraspecific variation and is slow for a large number of sequences. RESULTS: We introduce the multi-rate PTP (mPTP), an improved method that alleviates the theoretical and technical shortcomings of PTP. It incorporates different levels of intraspecific genetic diversity deriving from differences in either the evolutionary history or sampling of each species. Results on empirical data suggest that mPTP is superior to PTP and popular distance-based methods as it, consistently yields more accurate delimitations with respect to the taxonomy (i.e., identifies more taxonomic species, infers species numbers closer to the taxonomy). Moreover, mPTP does not require any similarity threshold as input. The novel dynamic programming algorithm attains a speedup of at least five orders of magnitude compared to PTP, allowing it to delimit species in large (meta-) barcoding data. In addition, Markov Chain Monte Carlo sampling provides a comprehensive evaluation of the inferred delimitation in just a few seconds for millions of steps, independently of tree size. AVAILABILITY AND IMPLEMENTATION: mPTP is implemented in C and is available for download at http://github.com/Pas-Kapli/mptp under the GNU Affero 3 license. A web-service is available at http://mptp.h-its.org . CONTACT: : paschalia.kapli@h-its.org or alexandros.stamatakis@h-its.org or tomas.flouri@h-its.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Classification/methods , DNA Barcoding, Taxonomic/methods , Markov Chains , Monte Carlo Method , Animals , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Phylogeny
2.
Mol Phylogenet Evol ; 98: 300-13, 2016 May.
Article in English | MEDLINE | ID: mdl-26876639

ABSTRACT

The Aegean region, located in the Eastern Mediterranean, is an area of rich biodiversity and endemism. Its position, geographical configuration and complex geological history have shaped the diversification history of many animal taxa. Mygalomorph spiders have drawn the attention of researchers, as excellent model systems for phylogeographical investigations. However, phylogeographic studies of spiders in the Aegean region are scarce. In this study, we focused on the phylogeography of the endemic ctenizid trap-door spider Cyrtocarenum Ausserer, 1871. The genus includes two morphologically described species: C. grajum (C.L. Koch, 1836) and C. cunicularium (Olivier, 1811). We sampled 60 specimens from the distributions of both species and analyzed four mitochondrial and two nuclear markers. Cyrtocarenum served as an example to demonstrate the importance of natural history traits in the inference of phylogeographic scenarios. The mtDNA substitution rates inferred for the genus are profoundly higher compared to araneomorph spiders and other arthropods, which seems tightly associated with their biology. We evaluate published mtDNA substitution rates followed in the literature for mygalomorph spiders and discuss potential pitfalls. Following gene tree (maximum likelihood, Bayesian inference) and species tree approaches ((*)BEAST), we reconstructed a time-calibrated phylogeny of the genus. These results, combined with a biogeographical ancestral-area analysis, helped build a biogeographic scenario that describes how the major palaeogeographic and palaeoclimatic events of the Aegean may have affected the distribution of Cyrtocarenum lineages. The diversification of the genus seems to have begun in the Middle Miocene in the present west Aegean area, while major phylogenetic events occurred at the Miocene-Pliocene boundary for C. cunicularium, probably related to the Messinian Salinity Crisis. Our results also demonstrate the clear molecular distinction of the two morphologically described species, but possible cryptic lineages may exist within C. cunicularium.


Subject(s)
DNA, Mitochondrial/genetics , Mutation Rate , Phylogeny , Spiders/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , Climate , Greece , Mitochondria/genetics , Phylogeography , Turkey
3.
Science ; 349(6247): 487, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228138

ABSTRACT

Tong et al. comment on the accuracy of the dating analysis presented in our work on the phylogeny of insects and provide a reanalysis of our data. They replace log-normal priors with uniform priors and add a "roachoid" fossil as a calibration point. Although the reanalysis provides an interesting alternative viewpoint, we maintain that our choices were appropriate.


Subject(s)
Insect Proteins/classification , Insecta/classification , Phylogeny , Animals
4.
Mol Phylogenet Evol ; 49(1): 102-10, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18644456

ABSTRACT

Mesalina is a widespread lacertid genus occurring throughout the Saharo-Sindian region from North Africa to Pakistan. It has been through a series of taxonomic revisions, but the phylogenetic relationships among the species remain unclear. In this study we estimate the phylogeographic structure of M. guttulata across most of its distributional range and we evaluate the relationships between M. guttulata and the sympatric species M. brevirostris and M. bahaeldini using partial mitochondrial DNA (mtDNA) sequences (cyt b and 16S). M. guttulata and M. brevirostris represent species complexes, whereas M. bahaeldini considered before as M. guttulata is a recently described species with very restricted distribution. Here we present the first evidence that M. guttulata is a paraphyletic taxon with respect to M. bahaeldini, while M. brevirostris proves to be a polytypic species or even a species complex, confirming previous studies. Although mtDNA markers have several properties that make them suitable for phylogeographic studies, they are not free of difficulties. Phylogeographic inferences within and between closely related species can be mislead by introgression and retention of ancestral polymorphism (incomplete lineage sorting). However, the present distribution pattern, the estimated times of divergence and the significant variation in morphology within M. guttulata led us to accept that the paraphyletic pattern observed, is most likely due to inaccurate taxonomy. Our hypothesis is that what has hitherto been considered as intraspecific variation, actually reflects species-level variation. Furthermore, our biogeographic analyses and the estimated time of divergences suggest that the present distribution of M. guttulata was the result of several dispersal and vicariant events, which are associated with historical changes (climatic oscillations and paleogeographic barriers) of late Miocene and Pliocene period.


Subject(s)
Lizards/classification , Lizards/genetics , Phylogeny , Animals , Bayes Theorem , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genes, Mitochondrial , Genes, rRNA , Geography , Likelihood Functions , Mitochondria/genetics , Models, Genetic , RNA, Ribosomal, 16S/genetics , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...