Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 10(7): 1058-1077, 2020 07.
Article in English | MEDLINE | ID: mdl-32341020

ABSTRACT

Oncogenic KRAS (KRAS*) is a key tumor maintenance gene in pancreatic ductal adenocarcinoma (PDAC), motivating pharmacologic targeting of KRAS* and its effectors. Here, we explored mechanisms involving the tumor microenvironment (TME) as a potential basis for resistance to targeting KRAS*. Using the inducible Kras G12D;Trp53 -/- PDAC mouse model, gain-of-function screens of epigenetic regulators identified HDAC5 as the top hit enabling KRAS* independent tumor growth. HDAC5-driven escaper tumors showed a prominent neutrophil-to-macrophage switch relative to KRAS*-driven tumors. Mechanistically, HDAC5 represses Socs3, a negative regulator of chemokine CCL2, resulting in increased CCL2, which recruits CCR2+ macrophages. Correspondingly, enforced Ccl2 promotes macrophage recruitment into the TME and enables tumor recurrence following KRAS* extinction. These tumor-associated macrophages in turn provide cancer cells with trophic support including TGFß to enable KRAS* bypass in a SMAD4-dependent manner. Our work uncovers a KRAS* resistance mechanism involving immune cell remodeling of the PDAC TME. SIGNIFICANCE: Although KRAS* is required for PDAC tumor maintenance, tumors can recur following KRAS* extinction. The capacity of PDAC cancer cells to alter the TME myeloid cell composition to support KRAS*-independent tumor growth illuminates novel therapeutic targets that may enhance the effectiveness of therapies targeting KRAS* and its pathway components.See related commentary by Carr and Fernandez-Zapico, p. 910.This article is highlighted in the In This Issue feature, p. 890.


Subject(s)
Oncogenes/physiology , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
3.
Nature ; 568(7752): 410-414, 2019 04.
Article in English | MEDLINE | ID: mdl-30918400

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Pinocytosis , Syndecan-1/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Disease Progression , Female , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction
4.
Cancer Discov ; 9(2): 248-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30373917

ABSTRACT

Loss-of-function mutations in the retinoblastoma gene RB1 are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with RB1 mutation (RB1 mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases AURKA and AURKB showed the strongest RB1 association in this assay. LY3295668, an AURKA inhibitor with over 1,000-fold selectivity versus AURKB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against RB1 mut cancer cells and leads to durable regression of RB1 mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle-assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in RB1-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AURKA for mitotic exit and survival. SIGNIFICANCE: The identification of a synthetic lethal interaction between RB1 and AURKA inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AURKA kinase activity without myelosuppression, suggest a new approach for the treatment of RB1-deficient malignancies, including patients progressing on CDK4/6 inhibitors.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Enzyme Inhibitors/pharmacology , M Phase Cell Cycle Checkpoints/drug effects , Retinoblastoma Binding Proteins/metabolism , Small Cell Lung Carcinoma/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Retinoblastoma Binding Proteins/genetics , Signal Transduction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
5.
Cancer Discov ; 6(1): 80-95, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26701088

ABSTRACT

UNLABELLED: The signaling mechanisms between prostate cancer cells and infiltrating immune cells may illuminate novel therapeutic approaches. Here, utilizing a prostate adenocarcinoma model driven by loss of Pten and Smad4, we identify polymorphonuclear myeloid-derived suppressor cells (MDSC) as the major infiltrating immune cell type, and depletion of MDSCs blocks progression. Employing a novel dual reporter prostate cancer model, epithelial and stromal transcriptomic profiling identified CXCL5 as a cancer-secreted chemokine to attract CXCR2-expressing MDSCs, and, correspondingly, pharmacologic inhibition of CXCR2 impeded tumor progression. Integrated analyses identified hyperactivated Hippo-YAP signaling in driving CXCL5 upregulation in cancer cells through the YAP-TEAD complex and promoting MDSC recruitment. Clinicopathologic studies reveal upregulation and activation of YAP1 in a subset of human prostate tumors, and the YAP1 signature is enriched in primary prostate tumor samples with stronger expression of MDSC-relevant genes. Together, YAP-driven MDSC recruitment via heterotypic CXCL5-CXCR2 signaling reveals an effective therapeutic strategy for advanced prostate cancer. SIGNIFICANCE: We demonstrate a critical role of MDSCs in prostate tumor progression and discover a cancer cell nonautonomous function of the Hippo-YAP pathway in regulation of CXCL5, a ligand for CXCR2-expressing MDSCs. Pharmacologic elimination of MDSCs or blocking the heterotypic CXCL5-CXCR2 signaling circuit elicits robust antitumor responses and prolongs survival.


Subject(s)
Chemokine CXCL5/genetics , Myeloid Cells/immunology , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/immunology , Smad4 Protein/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Chemokine CXCL5/metabolism , Disease Progression , Hippo Signaling Pathway , Humans , Male , Mice , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Signal Transduction , Transcription Factors , YAP-Signaling Proteins
6.
Cancer Res ; 75(6): 1091-101, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25736685

ABSTRACT

Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K-AKT-MTOR pathway and by the activation of AXL, PDGFRa, and HER1-2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Disease Models, Animal , Humans , MAP Kinase Signaling System , Mice , Pancreatic Neoplasms/genetics , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology
7.
Nat Commun ; 5: 5210, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25394905

ABSTRACT

The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Here, using models of oncogene-induced and replicative senescence, we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first 21 amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence.


Subject(s)
Cellular Senescence/physiology , Histones/physiology , Cathepsin L/metabolism , Cell Cycle/physiology , Chromatin/metabolism , Chromatin/physiology , E2F Transcription Factors/metabolism , Ectopic Gene Expression/physiology , Fibroblasts/metabolism , Fibroblasts/physiology , Histones/metabolism , Humans , Melanocytes/metabolism , Melanocytes/physiology , Nucleosomes/metabolism , Nucleosomes/physiology , Proteolysis , Repressor Proteins/metabolism , Repressor Proteins/physiology
8.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25119024

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Mitochondria/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Autophagy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Respiration/drug effects , Cell Survival/drug effects , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genes, p53/genetics , Glycolysis , Lysosomes/metabolism , Mice , Mitochondria/drug effects , Mutation/genetics , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxidative Phosphorylation/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Recurrence , Signal Transduction , Pancreatic Neoplasms
9.
Cell ; 158(1): 185-197, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954535

ABSTRACT

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle , Cell Cycle Proteins , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/metabolism , Disease Models, Animal , E2F Transcription Factors/metabolism , Humans , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/metabolism , YAP-Signaling Proteins , ras Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 109(23): 8971-6, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615382

ABSTRACT

Cellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. Here we combine quantitative mass spectrometry, ChIP deep-sequencing, and functional studies to determine the role of histone modifications on chromatin structure and gene-expression alterations associated with senescence in primary human cells. We uncover distinct senescence-associated changes in histone-modification patterns consistent with a repressive chromatin environment and link the establishment of one of these patterns--loss of H3K4 methylation--to the retinoblastoma tumor suppressor and the H3K4 demethylases Jarid1a and Jarid1b. Our results show that Jarid1a/b-mediated H3K4 demethylation contributes to silencing of retinoblastoma target genes in senescent cells, suggesting a mechanism by which retinoblastoma triggers gene silencing. Therefore, we link the Jarid1a and Jarid1b demethylases to a tumor-suppressor network controlling cellular senescence.


Subject(s)
Cellular Senescence/physiology , Chromatin/metabolism , Gene Expression Regulation/genetics , Gene Silencing/physiology , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Cell Line , Chromatin Immunoprecipitation , Genetic Vectors , High-Throughput Nucleotide Sequencing , Humans , Immunoblotting , Mass Spectrometry , Methylation , Retroviridae , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
11.
PLoS One ; 7(1): e29974, 2012.
Article in English | MEDLINE | ID: mdl-22276135

ABSTRACT

Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49f(high)/ALDH1A1(high)/H3K4/K27me3(low) subpopulation (CD49f+) of tumor cells. A strikingly similar CD49f(high)/H3K27me3(low) subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49f(high)/ALDH(high), label retaining cells (LRC) proliferated immediately in vivo, with time the CD49f(low)/ALDH(low), non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49f(high)/ALDH(high), label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2 phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f- cells can "reprogram" and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a "moving target" and their eradication might require more persistent strategies.


Subject(s)
Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Neoplastic Stem Cells/pathology , Animals , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Chick Embryo , Head and Neck Neoplasms/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, Nude , Neoplastic Stem Cells/metabolism , Squamous Cell Carcinoma of Head and Neck
12.
Nature ; 468(7327): 1105-9, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21179167

ABSTRACT

Cancer is a disease consisting of both genetic and epigenetic changes. Although increasing evidence demonstrates that tumour progression entails chromatin-mediated changes such as DNA methylation, the role of histone variants in cancer initiation and progression currently remains unclear. Histone variants replace conventional histones within the nucleosome and confer unique biological functions to chromatin. Here we report that the histone variant macroH2A (mH2A) suppresses tumour progression of malignant melanoma. Loss of mH2A isoforms, histone variants generally associated with condensed chromatin and fine-tuning of developmental gene expression programs, is positively correlated with increasing malignant phenotype of melanoma cells in culture and human tissue samples. Knockdown of mH2A isoforms in melanoma cells of low malignancy results in significantly increased proliferation and migration in vitro and growth and metastasis in vivo. Restored expression of mH2A isoforms rescues these malignant phenotypes in vitro and in vivo. We demonstrate that the tumour-promoting function of mH2A loss is mediated, at least in part, through direct transcriptional upregulation of CDK8. Suppression of CDK8, a colorectal cancer oncogene, inhibits proliferation of melanoma cells, and knockdown of CDK8 in cells depleted of mH2A suppresses the proliferative advantage induced by mH2A loss. Moreover, a significant inverse correlation between mH2A and CDK8 expression levels exists in melanoma patient samples. Taken together, our results demonstrate that mH2A is a critical component of chromatin that suppresses the development of malignant melanoma, a highly intractable cutaneous neoplasm.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Gene Expression Regulation, Neoplastic , Histones/metabolism , Melanoma/pathology , Neoplasm Metastasis/pathology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Profiling , Gene Knockdown Techniques , HCT116 Cells , Histones/deficiency , Histones/genetics , Humans , Melanoma/physiopathology , Melanoma, Experimental , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis/physiopathology , Rats , Up-Regulation
13.
Nature ; 455(7217): 1259-62, 2008 Oct 30.
Article in English | MEDLINE | ID: mdl-18815596

ABSTRACT

DNA methylation is an important epigenetic mark for transcriptional gene silencing (TGS) in diverse organisms. Recent studies suggest that the methylation status of a number of genes is dynamically regulated by methylation and demethylation. In Arabidopsis, active DNA demethylation is mediated by the ROS1 (repressor of silencing 1) subfamily of 5-methylcytosine DNA glycosylases through a base excision repair pathway. These demethylases have critical roles in erasing DNA methylation and preventing TGS of target genes. However, it is not known how the demethylases are targeted to specific sequences. Here we report the identification of ROS3, an essential regulator of DNA demethylation that contains an RNA recognition motif. Analysis of ros3 mutants and ros1 ros3 double mutants suggests that ROS3 acts in the same genetic pathway as ROS1 to prevent DNA hypermethylation and TGS. Gel mobility shift assays and analysis of ROS3 immunoprecipitate from plant extracts shows that ROS3 binds to small RNAs in vitro and in vivo. Immunostaining shows that ROS3 and ROS1 proteins co-localize in discrete foci dispersed throughout the nucleus. These results demonstrate a critical role for ROS3 in preventing DNA hypermethylation and suggest that DNA demethylation by ROS1 may be guided by RNAs bound to ROS3.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , DNA Methylation , RNA-Binding Proteins/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Silencing , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , RNA-Binding Proteins/genetics , Transcription, Genetic
14.
PLoS One ; 2(11): e1210, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-18030344

ABSTRACT

Post-translational modifications of histones play crucial roles in the genetic and epigenetic regulation of gene expression from chromatin. Studies in mammals and yeast have found conserved modifications at some residues of histones as well as non-conserved modifications at some other sites. Although plants have been excellent systems to study epigenetic regulation, and histone modifications are known to play critical roles, the histone modification sites and patterns in plants are poorly defined. In the present study we have used mass spectrometry in combination with high performance liquid chromatography (HPLC) separation and phospho-peptide enrichment to identify histone modification sites in the reference plant, Arabidopsis thaliana. We found not only modifications at many sites that are conserved in mammalian and yeast cells, but also modifications at many sites that are unique to plants. These unique modifications include H4 K20 acetylation (in contrast to H4 K20 methylation in non-plant systems), H2B K6, K11, K27 and K32 acetylation, S15 phosphorylation and K143 ubiquitination, and H2A K144 acetylation and S129, S141 and S145 phosphorylation, and H2A.X S138 phosphorylation. In addition, we found that lysine 79 of H3 which is highly conserved and modified by methylation and plays important roles in telomeric silencing in non-plant systems, is not modified in Arabidopsis. These results suggest distinctive histone modification patterns in plants and provide an invaluable foundation for future studies on histone modifications in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Histones/metabolism , Protein Processing, Post-Translational , Acetylation , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Chromatography, High Pressure Liquid , Methylation , Phosphorylation , Tandem Mass Spectrometry
15.
Plant Physiol Biochem ; 45(9): 637-46, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17761427

ABSTRACT

Pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) enzymes are responsible for the operation of ethanolic fermentation pathway that appears to correlate to an extent with anoxia tolerance in plants. This study was undertaken with the objective of (a) analysing the rice pdc gene family and (b) altering the efficacy of the ethanolic fermentation process, through production of transgenic rice plants over- and under-expressing pyruvate decarboxylase (employing Ospdc1 gene from rice) as well as over-expressing alcohol dehydrogenase (employing Ghadh2 gene from cotton) proteins. Correlations noted in this study between the pattern of expression of the Pdc alpha-subunit and Ospdc2 transcript as well as between the Pdc beta-subunit and Ospdc1 transcript suggest the possibility that alpha-subunit is encoded by Ospdc2 and that beta-subunit is encoded by Ospdc1. The fact that levels of Pdc beta-subunit were particularly high in pUH-sPdc1 (plasmid construct designed for over-expression of Ospdc1) seedlings while levels of beta-subunit levels were negligible or lower in pUH-asPdc1 (plasmid construct designed for under-expression of Ospdc1) seedlings also support these observations. Transgenics raised for over-expression of Pdc and Adh and under-expression of Pdc were confirmed for the transgene presence and effects by PCR, Southern blotting, Northern blotting, Western blotting and isozyme assays. Pdc and Adh over-expressing rice transgenics at early seedling stage under unstressed control growth conditions showed slight, consistent advantage in root vigour as compared to that of wild-type seedlings.


Subject(s)
Alcohol Dehydrogenase/metabolism , Oryza/enzymology , Oryza/genetics , Pyruvate Decarboxylase/metabolism , Alcohol Dehydrogenase/genetics , Gene Expression Regulation, Plant , Gossypium/enzymology , Gossypium/genetics , Oryza/growth & development , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Pyruvate Decarboxylase/genetics , Seedlings/genetics , Seedlings/growth & development
16.
Nature ; 447(7145): 735-8, 2007 Jun 07.
Article in English | MEDLINE | ID: mdl-17554311

ABSTRACT

Epigenetic regulation involves reversible changes in DNA methylation and/or histone modification patterns. Short interfering RNAs (siRNAs) can direct DNA methylation and heterochromatic histone modifications, causing sequence-specific transcriptional gene silencing. In animals and yeast, histone H2B is known to be monoubiquitinated, and this regulates the methylation of histone H3 (refs 10, 11). However, the relationship between histone ubiquitination and DNA methylation has not been investigated. Here we show that mutations in an Arabidopsis deubiquitination enzyme, SUP32/UBP26, decrease the dimethylation on lysine 9 of H3, suppress siRNA-directed methylation of DNA and release heterochromatic silencing of transgenes as well as transposons. We found that Arabidopsis histone H2B is monoubiquitinated at lysine 143 and that the levels of ubiquitinated H2B and trimethyl H3 at lysine 4 increase in sup32 mutant plants. SUP32/UBP26 can deubiquitinate H2B, and chromatin immunoprecipitation assays suggest an association between H2B ubiquitination and release of silencing. These data suggest that H2B deubiquitination by SUP32/UBP26 is required for heterochromatic histone H3 methylation and DNA methylation.


Subject(s)
DNA Methylation , Endopeptidases/metabolism , Gene Silencing , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Ubiquitin/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , DNA Transposable Elements/genetics , Endopeptidases/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Methylation , Mutation/genetics , Ubiquitin-Specific Proteases , Up-Regulation
17.
EMBO J ; 26(6): 1691-701, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17332757

ABSTRACT

Argonautes (AGOs) are conserved proteins that contain an RNA-binding PAZ domain and an RNase H-like PIWI domain. In Arabidopsis, except for AGO1, AGO4 and AGO7, the roles of seven other AGOs in gene silencing are not known. We found that a mutation in AGO6 partially suppresses transcriptional gene silencing in the DNA demethylase mutant ros1-1. In ago6-1ros1-1 plants, RD29A promoter short interfering RNAs (siRNAs) are less abundant, and cytosine methylation at both transgenic and endogenous RD29A promoters is reduced, compared to that in ros1-1. Interestingly, the ago4-1 mutation has a stronger suppression of the transcriptional silencing phenotype of ros1-1 mutant. Analysis of cytosine methylation at the endogenous MEA-ISR, AtREP2 and SIMPLEHAT2 loci revealed that the CpNpG and asymmetric methylation levels are lower in either of the ago6-1 and ago4-1 single mutants than those in the wild type, and the levels are the lowest in the ago6-1ago4-1 double mutant. These results suggest that AGO6 is important for the accumulation of specific heterochromatin-related siRNAs, and for DNA methylation and transcriptional gene silencing, this function is partly redundant with AGO4.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , DNA Methylation , Gene Silencing/physiology , RNA, Small Interfering/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Argonaute Proteins , Base Sequence , Blotting, Northern , Cloning, Molecular , Cluster Analysis , Heterochromatin/metabolism , Molecular Sequence Data , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phylogeny , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
18.
Curr Biol ; 17(1): 54-9, 2007 Jan 09.
Article in English | MEDLINE | ID: mdl-17208187

ABSTRACT

The Arabidopsis DNA glycosylase/lyase ROS1 participates in active DNA demethylation by a base-excision pathway. ROS1 has been shown to be required for demethylating a transgene promoter. To determine the function of ROS1 in demethylating endogenous loci, we carried out bisulfite-sequencing analysis of several transposons and other genes in the ros1 mutant. In the wild-type, although CpG sites at the majority of these loci are heavily methylated, many of the CpXpG and CpXpX sites have low levels of methylation or are not at all methylated. However, these CpXpG and CpXpX sites become heavily methylated in the ros1 mutant. Associated with this increased DNA methylation, these loci show decreased expression in the ros1 mutant. Our results suggest that active DNA demethylation is important in pruning the methylation patterns of the genome, and even the normally "silent" transposons are under dynamic control by both methylation and demethylation. This dynamic control may be important in keeping the plant epigenome plastic so that it can efficiently respond to developmental and environmental cues.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , DNA Methylation , Nuclear Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA Transposable Elements , GC Rich Sequence , Genome, Plant , Mutation , Nuclear Proteins/genetics
19.
J Biol Chem ; 281(49): 37636-45, 2006 Dec 08.
Article in English | MEDLINE | ID: mdl-17015446

ABSTRACT

Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer freezing tolerance to plants. It has been shown previously that the cold regulation of CBF3 involves an upstream bHLH-type transcription factor, ICE1. ICE1 binds to the Myc recognition sequences in the CBF3 promoter. Apart from Myc recognition sequences, CBF promoters also have Myb recognition sequences. We report here that the Arabidopsis MYB15 is involved in cold-regulation of CBF genes and in the development of freezing tolerance. The MYB15 gene transcript is up-regulated by cold stress. The MYB15 protein interacts with ICE1 and binds to Myb recognition sequences in the promoters of CBF genes. Overexpression of MYB15 results in reduced expression of CBF genes whereas its loss-of-function leads to increased expression of CBF genes in the cold. The myb15 mutant plants show increased tolerance to freezing stress whereas its overexpression reduces freezing tolerance. Our results suggest that MYB15 is part of a complex network of transcription factors controlling the expression of CBFs and other genes in response to cold stress.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Genes, Plant , Transcription Factors/genetics , Transcription Factors/physiology , Acclimatization/genetics , Acclimatization/physiology , Base Sequence , Cold Climate , DNA, Plant/genetics , Freezing , Gene Expression Regulation, Plant , Mutation , Two-Hybrid System Techniques
20.
Plant Cell ; 18(8): 2051-65, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16861386

ABSTRACT

MicroRNAs (miRNAs) are a class of regulatory RNAs of approximately 21 nucleotides that posttranscriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. miR398 targets two closely related Cu/Zn superoxide dismutases (cytosolic CSD1 and chloroplastic CSD2) that can detoxify superoxide radicals. CSD1 and CSD2 transcripts are induced in response to oxidative stress, but the regulatory mechanism of the induction is unknown. Here, we show that miR398 expression is downregulated transcriptionally by oxidative stresses, and this downregulation is important for posttranscriptional CSD1 and CSD2 mRNA accumulation and oxidative stress tolerance. We also provide evidence for an important role of miR398 in specifying the spatial and temporal expression patterns of CSD1 and CSD2 mRNAs. Our results suggest that CSD1 and CSD2 expression is fine-tuned by miR398-directed mRNA cleavage. Additionally, we show that transgenic Arabidopsis thaliana plants overexpressing a miR398-resistant form of CSD2 accumulate more CSD2 mRNA than plants overexpressing a regular CSD2 and are consequently much more tolerant to high light, heavy metals, and other oxidative stresses. Thus, relieving miR398-guided suppression of CSD2 in transgenic plants is an effective new approach to improving plant productivity under oxidative stress conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , MicroRNAs/physiology , Oxidative Stress , RNA Processing, Post-Transcriptional , Superoxide Dismutase/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Down-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Plants, Genetically Modified/metabolism , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...