Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 588, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182714

ABSTRACT

Endophytes are microorganisms that inhabit various plant parts and cause no damage to the host plants. During the last few years, a number of novel endophytic fungi have been isolated and identified from medicinal plants and were found to be utilized as bio-stimulants and bio fertilizers. In lieu of this, the present study aims to isolate and identify endophytic fungi associated with the leaves of Anisomeles indica L. an important medicinal plant of the Terai-Duars region of West Bengal. A total of ten endophytic fungi were isolated from the leaves of A. indica and five were identified using ITS1/ITS4 sequencing based on their ability for plant growth promotion, secondary metabolite production, and extracellular enzyme production. Endophytic fungal isolates were identified as Colletotrichum yulongense Ai1, Colletotrichum cobbittiense Ai2, Colletotrichum alienum Ai2.1, Colletotrichum cobbittiense Ai3, and Fusarium equiseti. Five isolates tested positive for their plant growth promotion potential, while isolates Ai4. Ai1, Ai2, and Ai2.1 showed significant production of secondary metabolites viz. alkaloids, phenolics, flavonoids, saponins, etc. Isolate Ai2 showed maximum total phenolic concentration (25.98 mg g-1), while isolate Ai4 showed maximum total flavonoid concentration (20.10 mg g-1). Significant results were observed for the production of extracellular enzymes such as cellulases, amylases, laccases, lipases, etc. The isolates significantly influenced the seed germination percentage of tomato seedlings and augmented their growth and development under in vitro assay. The present work comprehensively tested these isolates and ascertained their huge application for the commercial utilization of these isolates both in the agricultural and industrial sectors.


Subject(s)
Plants, Medicinal , Bioprospecting , Agriculture , Amylases , Flavonoids
2.
Plant Cell Physiol ; 65(1): 4-19, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37935412

ABSTRACT

Climate change has universally affected the whole ecosystem in a unified manner and is known to have improbable effects on agricultural productivity and food security. Carbon dioxide (CO2) and temperature are the major environmental factors that have been shown to increase sharply during the last century and are directly responsible for affecting plant growth and development. A number of previous investigations have deliberated the positive effects of elevated CO2 on plant growth and development of various C3 crops, while detrimental effects of enhanced temperature on different crop plants like rice, wheat, maize and legumes are generally observed. A combined effect of elevated CO2 and temperature has yet to be studied in great detail; therefore, this review attempts to delineate the interactive effects of enhanced CO2 and temperature on plant growth, development, physiological and molecular responses. Elevated CO2 maintains leaf photosynthesis rate, respiration, transpiration and stomatal conductance in the presence of elevated temperature and sustains plant growth and productivity in the presence of both these environmental factors. Concomitantly, their interaction also affects the nutritional quality of seeds and leads to alterations in the composition of secondary metabolites. Elevated CO2 and temperature modulate phytohormone concentration in plants, and due to this fact, both environmental factors have substantial effects on abiotic and biotic stresses. Elevated CO2 and temperature have been shown to have mitigating effects on plants in the presence of other abiotic stress agents like drought and salinity, while no such pattern has been observed in the presence of biotic stress agents. This review focuses on the interactive effects of enhanced CO2 and temperature on different plants and is the first of its kind to deliver their combined responses in such detail.


Subject(s)
Carbon Dioxide , Ecosystem , Temperature , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Photosynthesis/physiology , Crops, Agricultural/metabolism , Plant Leaves/physiology
3.
Plant Physiol Biochem ; 203: 108039, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37717347

ABSTRACT

Arbuscular mycorrhiza (AM) has been reported to influence secondary metabolism of Ocimum tenuiflorum L., thereby improving its therapeutic and commercial importance. To explain changes in the secondary metabolite profile, the study reports effects of AM on leaf metabolome of two high yielding genotypes of O. tenuiflorum inoculated with Rhizophagus intraradices. NMR-based non-targeted metabolic fingerprinting was related to changes at physiological, biochemical, and molecular levels in mycorrhizal (M) plants. AM resulted in higher accumulation of sucrose, which could be related with enhanced photosynthesis by virtue of increased uptake of mineral nutrients. A strong positive correlation between sucrose and net photosynthetic rate and sucrose and mineral nutrients supported that AM-mediated increase in uptake of mineral nutrients is associated with enhanced photosynthetic rate and accumulation of sucrose. Further, higher sucrose synthase activity resulted in increased glucose. Hexokinase activity was also higher in M plants resulting in higher pyruvate accumulation. On the contrary, Krebs cycle was compromised in M plants as evident by lower activities of its enzymes and concentrations of organic and amino acids. Nevertheless, AM increased activities and expressions of enzymes of terpenoid biosynthesis, shikimate, and phenylpropanoid pathways, thereby resulting in augmented production of terpenoids, phenylalanine, and phenols, respectively. Thus, metabolic reprogramming downstream of glycolysis was apparent wherein AMF resulted in more allocation of carbon resources to secondary metabolism as opposed to primary metabolism, which was supported by Pearson's correlation analysis. Higher C:N ratio in M plants explains the provision of more carbon resources to secondary metabolism as against primary metabolism.

4.
J Fungi (Basel) ; 9(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37504751

ABSTRACT

Kargil is a cold desert with hostile ecological conditions such as low temperature and precipitation, as well as difficult terrains. However, several wild mushrooms thrive well under such an extreme environment. Despite their abundance, the chemical composition of indigenous mushrooms has not been explored. This study aimed to assess the potential of two wild edible mushrooms from Kargil, Lactarius drassinus and Lactarius controversus, as food supplements by evaluating their nutritional and nutraceutical properties. Nutritional attributes such as total protein, available carbohydrates, soluble sugars, and vitamins were found to be high in the mushroom species. Furthermore, high mineral accumulation and relatively lower antinutrient concentrations resulted in higher bioavailabilities of Zn, Fe, Ca, and Mg. Gas-chromatography-mass-spectrometry-based metabolite profiling revealed that although the two mushroom species showed similar metabolite compositions, their relative concentrations differed. Sugars were the predominant compounds identified in both the species, with sugar alcohols being the major contributor. The second most abundant class of compound in L. drassinus was amino acids, with 5-oxoproline as the major contributor. On the other hand, fatty acids were the second most abundant compounds in L. controversus, with high oleic and linoleic acid concentrations. In the ultra-performance-liquid-chromatography-based quantification of phenolic compounds, chlorogenic acid was found to be highest in in terms of its concentration in both the mushrooms studied, followed by quercetin dihydrate and gallic acid in L. drassinus and L. controversus, respectively. Moreover, high antioxidant activities attributable to their high phenol, flavonoid, and carotenoid concentrations were observed. Overall, the two mushrooms offer well-balanced sources of nutritional and nutraceutical compounds, making them healthy foods.

5.
J Fungi (Basel) ; 9(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37367547

ABSTRACT

The use of biofertilizers has been the spotlight of research aiming to mitigate the food security threat as well as to restore the fertility of agricultural lands, for decades. Several studies are being conducted to unravel the role and mechanisms of plant growth-promoting microbes. In the present research, we evaluated the effect of silver nanoparticles (AgNPs) and Piriformospora indica on the growth and nutritional enhancement of black rice (Oryzae sativa. L.) individually and in combination. Among the different treatment conditions, the AgNPs + P. indica treatment led to a significant (p ≤ 0.05) increase in morphological and agronomic parameters. In comparison to the control, the percentage increase in plant height in AgNPs-treated black rice was 2.47%, while that for the treatment with only P. indica was 13.2% and that for the treatment with both AgNPs + P. indica was 30.9%. For the number of productive tillers, the effect of AgNPs in comparison to the control was non-significant; however, the effect of P. indica and AgNPs + P. indica showed a significant (p ≤ 0.05) increase of 13.2% and 30.9% in both the treatments, respectively. Gas chromatography mass spectrophotometry analysis of grains revealed that the contents of phenylalanine, tryptophan, and histidine (aromatic amino acids) were significantly (p ≤ 0.05) increased by 75%, 11.1%, and 50%, respectively, in P. indica-treated black rice. Nutrient profiling showed that macronutrients such as potassium, calcium, magnesium were found to be increased by 72.8%, 86.4% and 59.2%, respectively, in the treatment with AgNPs + P. indica in comparison to the control plants. Additionally, a significant (p ≤ 0.05) increase of 51.9% in anthocyanin content was observed in AgNPs + P. indica-treated black rice. The P. indica treatment also showed improved growth and augmented nutrient contents. From this study, we were able to understand that AgNPs + P. indica treatment would be a better plant growth-promoting factor and further evaluation would enable us to obtain a clear picture of its mechanisms of action.

6.
Plant Sci ; 332: 111706, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37054921

ABSTRACT

The study aimed at investigating Arbuscular Mycorrhiza (AM) mediated metabolic changes in two genotypes of mungbean (Vigna radiata) differing in their salt tolerance in presence of salt stress (100 mM NaCl). Colonisation by Claroideoglomus etunicatum resulted in higher growth, photosynthetic efficiency, total protein content, and lower levels of stress markers, indicating alleviation of stress in mungbean plants. AM differentially upregulated the components of Tricarboxylic acid (TCA) cycle in salt tolerant (ST) and salt sensitive (SS) genotypes that could be correlated to AM-mediated moderation in nutrient uptake. Under salt stress, while maximum increase in the activity of α-ketoglutarate dehydrogenase (65%) was observed in mycorrhizal (M)-ST; the increase in isocitrate dehydrogenase (79%) and fumarase (133%) activities was maximum in M-SS plants over their non-mycorrhizal (NM) counterparts. Apart from TCA, AM also affected gamma-aminobutyric acid (GABA) and glyoxylate pathways. Activities of enzymes implicated in GABA shunt increased in both the genotypes under stress resulting in increase in GABA concentration (46%). Notably, glyoxylate pathway was induced by AM in SS only, wherein M-SS exhibited significantly higher isocitrate lyase (49%) and malate synthase (104%) activities, reflected in higher malic acid concentration (84%), than NM under stress. The results suggest that AM moderates the central carbon metabolism and strategizes towards boosting the formation of stress-alleviating metabolites such as GABA and malic acid, especially in SS, bypassing the steps catalysed by salt-sensitive enzymes in TCA cycle. The study, therefore, advances the understanding on mechanisms by which AM ameliorates salt stress.


Subject(s)
Fabaceae , Mycorrhizae , Vigna , Mycorrhizae/physiology , Salt Stress , Genotype , gamma-Aminobutyric Acid/metabolism
7.
Plant Physiol Biochem ; 197: 107631, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36965318

ABSTRACT

Utilization of arbuscular mycorrhizal (AM) fungi (AMF) as a sustainable strategy in redeeming arsenic (As) toxicity in plants is a promising approach. Low As accumulation, restoration of physiological processes, and As tolerance by AMF have been documented in crop plants. However, to comprehend AM-mediated As tolerance in plants, understanding the biochemical responses of host to the symbiont is crucial. The study evaluated the effect of an AM fungus, Rhizophagus intraradices on tricarboxylic acid cycle (TCA) and nitrogen metabolism of Triticum aestivum under three As concentrations (0, 25, and 50 mg As kg-1 soil). Results showed that TCA cycle and nitrogen metabolism were severely impaired by As that resulted into a higher C/N ratio. However, colonization by R. intraradices attenuated As mediated alterations in TCA cycle by augmenting the activity of pyruvate dehydrogenase that provided sufficient substrate for the TCA cycle. Furthermore, mycorrhizal (M) plants reinstated the activities of isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase even under high As level. Although citrate synthase and oxoglutarate dehydrogenase activities declined upon As exposure in M-plants, these were nevertheless higher than their non-mycorrhizal (NM) counterparts, ensuring higher levels of citric acid and succinic acid in M-plants. AM colonization also moderated the As-mediated disturbances in nitrogen assimilation by augmenting the activity of nitrate reductase, nitrite reductase, glutamine synthase, and glutamine-2-oxoglutarate amino transferase. Overall findings of the study point out that colonization by R. intraradices favourably regulated the TCA cycle and nitrogen metabolism and confronted As-mediated alterations in C/N ratio.


Subject(s)
Arsenic , Mycorrhizae , Mycorrhizae/physiology , Citric Acid Cycle , Triticum/metabolism , Arsenic/toxicity , Arsenic/metabolism , Glutamine , Isocitrate Dehydrogenase/metabolism , Nitrogen/metabolism
9.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36836374

ABSTRACT

In the current research, unique Nano-Embedded Fungus (NEF), made by the synergic association of silver nanoparticles (AgNPs) and endophytic fungus (Piriformospora indica), is studied, and the impact of NEF on black rice secondary metabolites is reported. AgNPs were synthesized by chemical reduction process using the temperature-dependent method and characterized for morphological and structural features through UV visible absorption spectroscopy, zeta potential, XRD, SEM-EDX, and FTIR spectroscopy. The NEF, prepared by optimizing the AgNPs concentration (300 ppm) in agar and broth media, showed better fungal biomass, colony diameter, spore count, and spore size than the control P. indica. Treatment with AgNPs, P. indica, and NEF resulted in growth enhancement in black rice. NEF and AgNPs stimulated the production of secondary metabolites in its leaves. The concentrations of chlorophyll, carotenoids, flavonoids, and terpenoids were increased in plants inoculated with P. indica and AgNPs. The findings of the study highlight the synergistic effect of AgNPs and the fungal symbionts in augmenting the secondary metabolites in leaves of black rice.

10.
World J Microbiol Biotechnol ; 38(12): 253, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36316429

ABSTRACT

Salt stress is one of the major abiotic stresses that severely affect plant growth and yield, and also affect the livelihood of people all around the world. Arbuscular mycorrhizal fungi (AMF) colonize majority of terrestrial plants, including halophytes, xerophytes and glycophytes, and facilitate their functioning by various physiological, biochemical and molecular processes. In the past two decades, significant progress has been made to understand the role of AMF in mitigating salt stress and improving plant growth and productivity under saline conditions. Several studies focusing on the biochemical and physiological mechanisms that mycorrhizal plants employ to combat salt stress have been carried out. This review reinforces such studies and gives further insights into the molecular aspects of tolerance to salt stress in the plants colonized by AMF. It emphasises on the role of AMF in sensing and signalling salt stress, expression of aquaporin-encoding genes, Na+/H+ antiporters and transporters involved in Na+ exclusion, CNGCs and late embryogenesis abundant proteins in relation to salt stress tolerance. Further, this paper also reviews the accrual of compatible osmolytes, phytohormones and nitric oxide for understanding the benefits of this symbiosis under saline environment, and provides a benchmark information to understand the contribution of mycorrhizal symbiosis at molecular level and will attract attention of researchers to develop and highlight the future research programs in this field.


Subject(s)
Mycorrhizae , Humans , Mycorrhizae/physiology , Salt Tolerance , Salt Stress , Symbiosis , Salt-Tolerant Plants/genetics
11.
Front Plant Sci ; 12: 642101, 2021.
Article in English | MEDLINE | ID: mdl-34220878

ABSTRACT

Environmental stresses of (a)biotic origin induce the production of multitudinous compounds (metabolites and proteins) as protective defense mechanisms in plants. On account of the regulation of some of these compounds, arbuscular mycorrhizal fungi (AMF) reinforce the inherent tolerance of plants toward the stress of different origins and kind. This article reviews two specific fundamental mechanisms that are categorically associated with mycorrhiza in alleviating major abiotic stresses, salt, drought, and heavy metal (HM) toxicity. It puts emphasis on aquaporins (AQPs), the conduits of water and stress signals; and polyamines (PAs), the primordial stress molecules, which are regulated by AMF to assure water, nutrient, ion, and redox homeostasis. Under stressful conditions, AMF-mediated host AQP responses register distinct patterns: an upregulation to encourage water and nutrient uptake; a downregulation to restrict water loss and HM uptake; or no alterations. The patterns thereof are apparently an integrative outcome of the duration, intensity, and type of stress, AMF species, the interaction of fungal AQPs with that of plants, and the host type. However, the cellular and molecular bases of mycorrhizal influence on host AQPs are largely unexplored. The roles of PAs in augmenting the antioxidant defense system and improving the tolerance against oxidative stress are well-evident. However, the precise mechanism by which mycorrhiza accords stress tolerance by influencing the PA metabolism per se is abstruse and broadly variable under different stresses and plant species. This review comprehensively analyzes the current state-of-art of the involvement of AMF in "PA and AQP modulation" under abiotic stress and identifies the lesser-explored landscapes, gaps in understanding, and the accompanying challenges. Finally, this review outlines the prospects of AMF in realizing sustainable agriculture and provides insights into potential thrust areas of research on AMF and abiotic stress.

12.
Front Plant Sci ; 12: 628611, 2021.
Article in English | MEDLINE | ID: mdl-33968096

ABSTRACT

Fusarium oxysporum (Fo) is a notorious pathogen that significantly contributes to yield losses in crops of high economic status. It is responsible for vascular wilt characterized by the browning of conductive tissue, wilting, and plant death. Individual strains of Fo are host specific (formae speciales), and approximately, 150 forms have been documented so far. The pathogen secretes small effector proteins in the xylem, termed as Secreted in Xylem (Six), that contribute to its virulence. Most of these proteins contain cysteine residues in even numbers. These proteins are encoded by SIX genes that reside on mobile pathogenicity chromosomes. So far, 14 proteins have been reported. However, formae speciales vary in SIX protein profile and their respective gene sequence. Thus, SIX genes have been employed as ideal markers for pathogen identification. Acquisition of SIX-encoding mobile pathogenicity chromosomes by non-pathogenic lines, through horizontal transfer, results in the evolution of new virulent lines. Recently, some SIX genes present on these pathogenicity chromosomes have been shown to be involved in defining variation in host specificity among formae speciales. Along these lines, the review entails the variability (formae speciales, races, and vegetative compatibility groups) and evolutionary relationships among members of F. oxysporum species complex (FOSC). It provides updated information on the diversity, structure, regulation, and (a)virulence functions of SIX genes. The improved understanding of roles of SIX in variability and virulence of Fo has significant implication in establishment of molecular framework and techniques for disease management. Finally, the review identifies the gaps in current knowledge and provides insights into potential research landscapes that can be explored to strengthen the understanding of functions of SIX genes.

13.
Front Plant Sci ; 12: 640379, 2021.
Article in English | MEDLINE | ID: mdl-33777073

ABSTRACT

Contamination of agricultural soil by arsenic (As) is a serious menace to environmental safety and global food security. Symbiotic plant-microbe interaction, such as arbuscular mycorrhiza (AM), is a promising approach to minimize hazards of As contamination in agricultural soil. Even though the potential of AM fungi (AMF) in redeeming As tolerance and improving growth is well recognized, the detailed metabolic and physiological mechanisms behind such beneficial effects are far from being completely unraveled. The present study investigated the ability of an AM fungus, Rhizophagus intraradices, in mitigating As-mediated negative effects on photosynthesis and sugar metabolism in wheat (Triticum aestivum) subjected to three levels of As, viz., 0, 25, and 50 mg As kg-1 of soil, supplied as sodium arsenate. As exposure caused significant decrease in photosynthetic pigments, Hill reaction activity, and gas exchange parameters such as net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration. In addition, As exposure also altered the activities of starch-hydrolyzing, sucrose-synthesizing, and sucrose-degrading enzymes in leaves. Colonization by R. intraradices not only promoted plant growth but also restored As-mediated impairments in plant physiology. The symbiosis augmented the concentration of photosynthetic pigments, enhanced Hill reaction activity, and improved leaf gas exchange parameters and water use efficiency of T. aestivum even at high dose of 50 mg As kg-1 of soil. Furthermore, inoculation with R. intraradices also restored As-mediated alteration in sugar metabolism by modulating the activities of starch phosphorylase, α-amylase, ß-amylase, acid invertase, sucrose synthase, and sucrose-phosphate synthase in leaves. This ensured improved sugar and starch levels in mycorrhizal plants. Overall, the study advocates the potential of R. intraradices in bio-amelioration of As-induced physiological disturbances in wheat plant.

14.
J Basic Microbiol ; 60(5): 415-423, 2020 May.
Article in English | MEDLINE | ID: mdl-32115755

ABSTRACT

Endophytic fungi are known to play an important role in driving the evolution of plants by conferring adaptational advantages to their host through the production of secondary metabolites and phytohormones. In this study, we evaluated the diversity and phylogenetic relationship of endophytic fungal communities from four Dendrobium species viz., Dendrobium chrysanthum, Dendrobium heterocarpum, Dendrobium hookerianum, and Dendrobium longicornu of Meghalaya, India. A total of 51 culturable endophytic fungi were isolated from the four selected orchid species. The isolates were identified based on nuclear large subunit sequences into 33 species. Approximately 91% of the isolates showed affinity to Ascomycetes, while 9% of the isolates showed BLAST search similarity to Basidiomycetes. The most common genera were Trichoderma and Xylaria. The most prevalent genera were Fusarium, which was detected in all the four Dendrobium species followed by Diaporthe, which was present in three Dendrobium species viz., D. chrysanthum, D. hookerianum, and D. heterocarpum. The Shannon index value of endophytic fungal communities was the highest in D. chrysanthum (2.66), while D. longicornu (1) had the highest Evenness index. The present study revealed that endophytic fungi in these orchids are an amalgam of pathogenic and beneficial fungi, which have, at the least, switched their lifestyle to asymptomatic endophyte in their host. To our knowledge, this is the first such report on the diversity of endophytic fungi in the four selected Dendrobium species from Meghalaya, India.


Subject(s)
Dendrobium/microbiology , Endophytes/isolation & purification , Fungi/isolation & purification , Biodiversity , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Dendrobium/classification , Endophytes/classification , Endophytes/genetics , Fungi/classification , Fungi/genetics , Host Specificity , India , Mycobiome/genetics , Phylogeny
15.
Arch Microbiol ; 202(1): 171-179, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31549205

ABSTRACT

Alternaria leaf spot (ALS) caused by Alternaria carthami Chowdhary is one of the major threats to the cultivation of safflower in the world. The pathogen is seed borne and requires early detection for restricting its transmission and proliferation. A PCR-based diagnostic assay was developed for easy, quick and reliable detection of A. carthami in infected seeds and leaf samples of safflower. A primer set, AcSPF and AcSPR was designed using ribosomal internal transcribed spacer regions of A. carthami that consistently produced a distinct amplicon of 340 bp with DNA extracted from thirty A. carthami isolates. The specificity of the primer was confirmed using strains of 26 other strains of Alternaria and four other fungal pathogens of safflower. The sensitivity of detection was further enhanced from concentration of 100 pg by simple PCR to as low as 10 pg fungal DNA by a nested PCR assay using ITS and AcSPF and AcSPR primers. The primer pair also facilitated detection of A. carthami in infected seeds and leaf samples. The study provides an accurate and sensitive diagnostic tool for detection of A. carthami.


Subject(s)
Agriculture/methods , Alternaria/genetics , Polymerase Chain Reaction , Carthamus tinctorius/microbiology , DNA Primers/genetics , DNA, Fungal/genetics , Plant Leaves/microbiology , Polymerase Chain Reaction/standards , Seeds/microbiology , Sensitivity and Specificity
16.
Plant Signal Behav ; 14(11): 1666656, 2019.
Article in English | MEDLINE | ID: mdl-31526096

ABSTRACT

Glycine betaine (GB), an osmolyte, is produced in chloroplasts by the action of betaine aldehyde dehydrogenase (BADH) on its precursor betaine aldehyde. The present work highlights the significance of nitric oxide (NO) in GB homeostasis as a long-distance salt (120 mM NaCl) stress-elicited response. In light-grown seedling cotyledons, both the activity and transcript levels of BADH are much higher than in dark-grown seedlings irrespective of salt stress. Significantly high accumulation of GB in dark-grown seedling cotyledons indicates its preferential mobilization from cotyledons to other plant parts in light-grown seedlings. NO donor application (diethylenetriamine) maintains high BADH activity in light, although in dark it is brought down marginally. BADH levels are maintained high in light than in dark in respective treatments. Reversal of the effect of NO donor on age-dependent GB content, BADH activity, and transcript levels by NO scavenger (diethyldithiocarbamate) further demonstrates the impact of NO on GB homeostasis in light- and dark-grown seedlings in an age-dependent manner, major modulation being observed in 4-d-old seedlings. The present work, thus, provides new information on co-regulation of GB homeostasis by NO and light. It also puts forward new information of GB-NO crosstalk in maneuvering salt stress sensing as a long-distance response in seedlings.


Subject(s)
Betaine-Aldehyde Dehydrogenase/metabolism , Betaine/metabolism , Cotyledon/metabolism , Helianthus/radiation effects , Light , Nitric Oxide/metabolism , Seedlings/metabolism , Cotyledon/radiation effects , Helianthus/metabolism , Seedlings/radiation effects
17.
Front Plant Sci ; 10: 470, 2019.
Article in English | MEDLINE | ID: mdl-31031793

ABSTRACT

Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.

18.
World J Microbiol Biotechnol ; 34(12): 175, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30446834

ABSTRACT

Safflower wilt, caused by Fusarium oxysporum f. sp. carthami (Foc) is a major limiting factor for safflower (Carthamus tinctorius) production worldwide. In India alone, about 40-80% disease incidence has been reported. A rapid, efficient, specific, and sensitive diagnostic technique for Foc is therefore crucial to manage Fusarium wilt of safflower. Twenty-five isolates of F. oxysporum formae speciales infecting other crops, 17 isolates of Fusarium spp. and seven isolates of other fungal pathogens of safflower along with 75 Foc isolates were used for identification of band specific to Foc using inter-simple sequence repeat (ISSR) analysis. Out of 70 ISSR primers, the one that specifically amplified a 490 bp fragment from all the Foc isolates was selected. Sequence of the amplified fragment was utilized to design sequence characterized amplified region (SCAR) primers (FocScF/FocScR). The primer pair unambiguously and exclusively amplified a DNA fragment of approximately 213 bp in all the 75 Foc isolates. The primer set was able to detect as low as 10 pg of Foc genomic DNA using conventional PCR, while the SCAR primers when coupled with real-time qPCR demonstrated detection limits of 1 pg for Foc genomic DNA and 1000 conidia/g for soil. The assay enabled reliable diagnosis of Foc DNA in contaminated safflower fields and expedited Foc detection at 72 h post inoculation in asymptomatic seedlings. This method facilitates quick and precise detection of Foc in plant and soil samples and can be exploited for timely surveillance and sustainable management of the disease.


Subject(s)
DNA, Fungal/analysis , Fusariosis/diagnosis , Fusarium/genetics , Fusarium/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Soil Microbiology , Carthamus tinctorius/microbiology , Cloning, Molecular , DNA Primers/genetics , DNA, Fungal/genetics , Fusariosis/microbiology , Fusarium/pathogenicity , Genetic Markers , India , Microsatellite Repeats , Molecular Typing/methods , Mycological Typing Techniques/methods , Plant Diseases/microbiology , Seedlings , Sensitivity and Specificity , Soil , Spores, Fungal
19.
World J Microbiol Biotechnol ; 34(9): 140, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30171375

ABSTRACT

Alternaria leaf spot caused by Alternaria carthami is one of the most devastating diseases of safflower. Diversity among 95 isolates of A. carthami was determined using virulence assays, enzyme assays, dominant (ISSR) and co-dominant (SSR) markers. Collections and isolations were made from three major safflower producing states of India. The virulence assays categorised the population into four groups based on level of virulence. Estimation of activities of cell wall degrading enzymes (CWDE) yielded concurrent results to virulence assays with maximum CWDE activities in most virulent group. Eighteen ISSR primers were used and 23 polymorphic microsatellite markers were developed to assess the genetic diversity and determine the population structure of A. carthami. Analysis of ISSR profiles revealed high genetic diversity (Nei's Genetic diversity index; h = 0.36). Microsatellite markers produced a total of 56 alleles with an average of 2.43 alleles per microsatellite marker and Nei's genetic diversity index as h = 0.43. Unweighted Neighbor-joining and population structure analysis using both the marker systems differently arranged the isolates into three clusters. Distance analysis of the marker profiles provided no evidence for geographical clustering of isolates, indicating that isolates are randomly spread across India, signifying high potential of the fungus to adapt to diverse regions. Microsatellite markers clustered the isolates in consonance to the virulence groups in the dendrogram. This implies that the fungus has a high potential to adapt to resistant cultivars or fungicides. The information can aid in the breeding and deployment of A. carthami resistant varieties, and in early blight disease management in all safflower growing regions of the world.


Subject(s)
Alternaria/enzymology , Alternaria/genetics , Alternaria/isolation & purification , Biomarkers , Alleles , Alternaria/pathogenicity , Carthamus tinctorius/microbiology , Cellulase/analysis , DNA Primers , DNA, Fungal/genetics , Enzyme Assays , Enzymes , Fungal Proteins/genetics , Fungicides, Industrial , Genes, Fungal/genetics , Genetic Variation , Glycoside Hydrolases/analysis , India , Microsatellite Repeats , Plant Diseases/microbiology , Polygalacturonase/analysis , Polymorphism, Genetic , Virulence/genetics
20.
Curr Genet ; 64(2): 443-457, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28940057

ABSTRACT

Gray mold disease inflicted by Botrytis cinerea is a serious menace responsible for significant economic loss worldwide. Due to its polyphagous nature, the pathogen has enthused inquisitiveness in researchers to unravel its complexity. Agrobacterium tumefaciens-mediated transformation was used to generate insertional mutants of Botrytis cinerea. A mutant (BCM-55) with disruption in a gene (BcDGAT2) that encodes for diacylglycerol O-acyl transferase 2 (DGAT2), showed enervated virulence on various hosts' tissues. Enzyme DGAT2 is crucial in the final step of synthesis of triacylglycerol (TAG) that plays an important role in homeostasis of membrane and cellular processes. However, the role of DGAT2 has never been reported in a phytopathogenic fungus. In this study, BCM-55 was characterized to ascertain the role of DGAT2 in virulence of B. cinerea. The insertional mutant was defective in spore production and lacked sclerotia formation as a consequence of lower accumulation of TAG. A significant delay in spore germination in BCM-55 was accompanied with a low penetration potential. Hyphae of the mutant formed swollen endings with considerable impairment in penetration. Deletion of BcDGAT2 also led to increased sensitivity towards cell wall and membrane-disturbing agents. Furthermore, BCM-55 was deficient in the production of oxalic acid and showed lower activity of a cell wall-degrading enzyme, polygalacturonase. The role of BcDGAT2 in virulence was further confirmed by targeted deletion and complementation of the gene. The results insinuate a crucial role of BcDGAT2 in penetration and consequently virulence of B. cinerea. The study provides novel insights into plant-pathogen interactions that can be exploited to develop suitable disease management strategies.


Subject(s)
Botrytis/genetics , Diacylglycerol O-Acyltransferase/genetics , Plant Diseases/genetics , Solanum lycopersicum/microbiology , Botrytis/pathogenicity , Hyphae/genetics , Hyphae/pathogenicity , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Spores, Fungal/genetics , Spores, Fungal/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...