Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 6(9): 6049-53, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24380392

ABSTRACT

Polystyrene fibers loaded with an energetic blend of nanoaluminum (n-Al) and perfluoropolyether (PFPE) were successfully fabricated via electrospinning producing nanothermite fabrics. Fibers were generated with loadings up to 17 wt % n-Al/PFPE incorporated into the fiber. Microscopy analysis by SEM and TEM confirm a uniform dispersion of PFPE treated n-Al on the outside and inside of the fibers. Metallized fibers were thermally active upon immediate ignition from a controlled flame source. Thermal analysis by differential scanning calorimetry (DSC) found no change in glass transition temperature when comparing pure polystyrene fibers with fibers loaded up to 17 wt % n-Al/PFPE. Thermal gravimetric analysis (TGA) revealed a shift in decomposition temperatures to lower onsets upon increased loadings of n-Al/PFPE blends, consistent with previous studies. Flame propagation studies confirmed that the metallized fibers are pryolants. These metallized fibers are a recent development in metastable intermolecular composites (MICs) and details of their synthesis, characterization, and thermal properties are presented.

2.
Rev Sci Instrum ; 84(10): 104902, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182146

ABSTRACT

Temperature measurements within the highly complex reaction field of energetic materials are complicated but existing technology enables point source measurements that identify a maximum temperature at a single location. This study presents a method to extend point source measurements to thermally map the spatial distribution of temperature over a large field of interest. The method couples point source temperature measurements from a multi-wavelength pyrometer with irradiance measurements from an infrared camera to produce a highly discretized thermal map that includes the reaction and surrounding field. This technique enables analysis of temperature gradients within the field of interest and an understanding of energy propagation beyond the point of reaction. Point source measurements of maximum temperature are within 10% of reported values. The method was illustrated for the aluminum and polytetrafluoroethylene reaction and the thermal distribution of temperature produced 30,720 temperature measurements over a field of interest corresponding to 3.5 cm × 8 cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...