Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365893

ABSTRACT

This paper aims to explore the qualification of step- and lock-in heating thermography as techniques capable of inspecting new composite rail carbodies following input and inspection requirements set by the rail manufacturing industry. Specifically, we studied (a) a monolithic CFRP sample (20 mm thickness) and (b) a CFRP-PET foam-CFRP sandwich (40 mm total thickness) component, that were manufactured with artificial defects, to replicate the side wall sections of a carbody. The samples proved to be very challenging to test using only one-sided inspection due to (1) exhibiting significant thickness compared to existing literature, (2) low surface emissivity and (3) that the foam core of the sandwich sample was a thermal insulating material. In addition, the sandwich sample was designed with defects on both skins. Both thermography techniques provided similar defect detection results, although step heating offered faster detection. In the case of the monolithic panel, defects up to 10 mm depth were detected, with minor detection of defects at 15 mm depth with a step-heating protocol between 90 s and 120 s overall acquisition, which was faster than the 140 s used with the lock-in technique. For the sandwich component only the front skin defects were detected, with both techniques using heating protocols between 70-120 s.

2.
Ultrasonics ; 123: 106707, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35202978

ABSTRACT

This work presents an innovative approach according to an experiment-based fitting method to determine the damping property of a viscoelastic coating layer, in a simple, low-cost, and time-effective manner. In this experiment, symmetric and asymmetric ultrasonic Lamb waves were applied to two coated plates with different thicknesses, and the waves were generated using piezo discs. A viscoelastic coating influences the signal amplitude as well as the wave phase. By comparing the amplitude ratio (AR) of the transmitting signals between the coated and bare plates, the damping property of the viscoelastic coating was experimentally determined. Similar to the experiments employing the finite element method (FEM) software, in this experiment, ABAQUS, was employed to verify the conformity between numerical and experimental AR. By selecting a non-dispersive Rayleigh damping ß for the coating layers at all frequencies, the computational cost reduced significantly to one-tenth the original cost. Apart from corroboration by AR matching, the numerical dispersion curves of the group velocity were also validated by experimental curves. The FEM dispersion curves in the frequency range of the tests were found to be highly reliable, with an average error of less than 1% for the first experimental setup and 10% for the second setup. Furthermore, in coated waveguides, the proposed technique could precisely estimate the damping property of the viscoelastic coating layers, where excitability in a wide range of frequencies is required. However, this precision strongly relies on the selected mode, frequency range, PZT quality, and waveguide thickness.

3.
Sensors (Basel) ; 16(4)2016 04 22.
Article in English | MEDLINE | ID: mdl-27110792

ABSTRACT

Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.

4.
Ultrasonics ; 62: 35-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25991388

ABSTRACT

Overhead Transmission Line (OVTL) cables can experience structural defects and are, therefore, inspected using Non-Destructive Testing (NDT) techniques. Ultrasonic Guided Waves (UGW) is one NDT technique that has been investigated for inspection of these cables. For practical use, it is desirable to be able to inspect as long a section of cable as possible from a single location. This paper investigates increasing the UGW inspection range on Aluminium Conductor Steel Reinforced (ACSR) cables by compensating for dispersion using dispersion curve data. For ACSR cables, it was considered to be difficult to obtain accurate dispersion curves using modelling due to the complex geometry and unknown coupling between wire strands. Group velocity dispersion curves were, therefore, measured experimentally on an untensioned, 26.5m long cable and a method of calculating theoretical dispersion curves was obtained. Attenuation and dispersion compensation were then performed for a broadband Maximum Length Sequence (MLS) excitation signal. An increase in the Signal to Noise Ratio (SNR) of about 4-8dB compared to that of the dispersed signal was obtained. However, the main benefit was the increased ability to resolve the individual echoes from the end of the cable and an introduced defect in the form of a cut, which was 7 to at least 13dB greater than that of the dispersed signal. Five echoes were able to be clearly detected using MLS excitation signal, indicating the potential for an inspection range of up to 130m in each direction. To the best of the authors knowledge, this is the longest inspection range for ACSR cables reported in the literature, where typically cables, which were only one or two meter long, have been investigated previously. Narrow band tone burst and Hann windowed tone burst excitation signal also showed increased SNR and ability to resolve closely spaced echoes.

SELECTION OF CITATIONS
SEARCH DETAIL
...