Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 13(1): 76-91, 2019 01.
Article in English | MEDLINE | ID: mdl-30111868

ABSTRACT

Marine algae convert a substantial fraction of fixed carbon dioxide into various polysaccharides. Flavobacteriia that are specialized on algal polysaccharide degradation feature genomic clusters termed polysaccharide utilization loci (PULs). As knowledge on extant PUL diversity is sparse, we sequenced the genomes of 53 North Sea Flavobacteriia and obtained 400 PULs. Bioinformatic PUL annotations suggest usage of a large array of polysaccharides, including laminarin, α-glucans, and alginate as well as mannose-, fucose-, and xylose-rich substrates. Many of the PULs exhibit new genetic architectures and suggest substrates rarely described for marine environments. The isolates' PUL repertoires often differed considerably within genera, corroborating ecological niche-associated glycan partitioning. Polysaccharide uptake in Flavobacteriia is mediated by SusCD-like transporter complexes. Respective protein trees revealed clustering according to polysaccharide specificities predicted by PUL annotations. Using the trees, we analyzed expression of SusC/D homologs in multiyear phytoplankton bloom-associated metaproteomes and found indications for profound changes in microbial utilization of laminarin, α-glucans, ß-mannan, and sulfated xylan. We hence suggest the suitability of SusC/D-like transporter protein expression within heterotrophic bacteria as a proxy for the temporal utilization of discrete polysaccharides.


Subject(s)
Flavobacteriaceae/metabolism , Phytoplankton/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flavobacteriaceae/genetics , Gene Expression Regulation, Bacterial , Genomics , North Sea , Proteomics
2.
Environ Microbiol ; 20(11): 4127-4140, 2018 11.
Article in English | MEDLINE | ID: mdl-30246424

ABSTRACT

Marine microscopic algae carry out about half of the global carbon dioxide fixation into organic matter. They provide organic substrates for marine microbes such as members of the Bacteroidetes that degrade algal polysaccharides using carbohydrate-active enzymes (CAZymes). In Bacteroidetes genomes CAZyme encoding genes are mostly grouped in distinct regions termed polysaccharide utilization loci (PULs). While some studies have shown involvement of PULs in the degradation of algal polysaccharides, the specific substrates are for the most part still unknown. We investigated four marine Bacteroidetes isolated from the southern North Sea that harbour putative mannan-specific PULs. These PULs are similarly organized as PULs in human gut Bacteroides that digest α- and ß-mannans from yeasts and plants respectively. Using proteomics and defined growth experiments with polysaccharides as sole carbon sources we could show that the investigated marine Bacteroidetes express the predicted functional proteins required for α- and ß-mannan degradation. Our data suggest that algal mannans play an as yet unknown important role in the marine carbon cycle, and that biochemical principles established for gut or terrestrial microbes also apply to marine bacteria, even though their PULs are evolutionarily distant.


Subject(s)
Bacteroidetes/metabolism , Mannans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroidetes/enzymology , Bacteroidetes/genetics , Carbohydrate Metabolism , Carbon Cycle , Humans , Mannans/chemistry , North Sea , Proteomics
3.
ISME J ; 12(12): 2894-2906, 2018 12.
Article in English | MEDLINE | ID: mdl-30061707

ABSTRACT

Polysaccharide degradation by heterotrophic microbes is a key process within Earth's carbon cycle. Here, we use environmental proteomics and metagenomics in combination with cultivation experiments and biochemical characterizations to investigate the molecular details of in situ polysaccharide degradation mechanisms during microalgal blooms. For this, we use laminarin as a model polysaccharide. Laminarin is a ubiquitous marine storage polymer of marine microalgae and is particularly abundant during phytoplankton blooms. In this study, we show that highly specialized bacterial strains of the Bacteroidetes phylum repeatedly reached high abundances during North Sea algal blooms and dominated laminarin turnover. These genomically streamlined bacteria of the genus Formosa have an expanded set of laminarin hydrolases and transporters that belonged to the most abundant proteins in the environmental samples. In vitro experiments with cultured isolates allowed us to determine the functions of in situ expressed key enzymes and to confirm their role in laminarin utilization. It is shown that laminarin consumption of Formosa spp. is paralleled by enhanced uptake of diatom-derived peptides. This study reveals that genome reduction, enzyme fusions, transporters, and enzyme expansion as well as a tight coupling of carbon and nitrogen metabolism provide the tools, which make Formosa spp. so competitive during microalgal blooms.


Subject(s)
Bacteroidetes/physiology , Eutrophication , Flavobacteriaceae/physiology , Glucans/metabolism , Microalgae/microbiology , Polysaccharides/metabolism , Adaptation, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroidetes/genetics , Carbon Cycle , Flavobacteriaceae/genetics , Hydrolases/genetics , Hydrolases/metabolism , Metagenomics , Microalgae/metabolism , North Sea , Phytoplankton/metabolism , Phytoplankton/microbiology
4.
Biol Chem ; 398(7): 793-811, 2017 06 27.
Article in English | MEDLINE | ID: mdl-27926477

ABSTRACT

Hepatoma-derived growth factor (HDGF) is a protein with diverse intracellular functions. Moreover, after non-conventional secretion, extracellular HDGF is able to influence different signaling pathways, leading for example to induction of processes like epithelial-mesenchymal transition (EMT) and cell migration. Intriguingly, in recent proteome studies, HDGF was also found secreted by special microvesicles called exosomes. Recently, we demonstrated the existence of two new HDGF isoforms (B and C). These isoforms are involved in different cellular processes than HDGF-A. Along this line, in the present study we discovered that full length HDGF-A clearly is located inside of exosomes, whereas the isoforms HDGF-B and HDGF-C are found exclusively on the outer surface. Furthermore, while HDGF-B and HDGF-C seem to use exosomes mediated pathway exclusively, HDGF-A was found also as unbound protein in the conditioned media. The new finding of an intra- or extra-exosomal localisation of protein splice variants opens a fascinating new perspective concerning functional diversity of HDGF isoforms. Dysregulation of HDGF expression during cancer development and tumor progression is a commonly known fact. With our new findings, unraveling the potential functional impact according to physiological versus pathophysiologically altered levels and compositions of intra- and extra-exosomal HDGF has to be addressed in future studies.


Subject(s)
Exosomes/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Peptide Fragments/metabolism , Autocrine Communication , Cell Line, Tumor , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Paracrine Communication , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Transcription, Genetic
5.
Environ Microbiol ; 18(12): 4456-4470, 2016 12.
Article in English | MEDLINE | ID: mdl-27348854

ABSTRACT

Marine Bacteroidetes have pronounced capabilities of degrading high molecular weight organic matter such as proteins and polysaccharides. Previously we reported on 76 Bacteroidetes-affiliated fosmids from the North Atlantic Ocean's boreal polar and oligotrophic subtropical provinces. Here, we report on the analysis of further 174 fosmids from the same libraries. The combined, re-assembled dataset (226 contigs; 8.8 Mbp) suggests that planktonic Bacteroidetes at the oligotrophic southern station use more peptides and bacterial and animal polysaccharides, whereas Bacteroidetes at the polar station (East-Greenland Current) use more algal and plant polysaccharides. The latter agrees with higher abundances of algae and terrigenous organic matter, including plant material, at the polar station. Results were corroborated by in-depth bioinformatic analysis of 14 polysaccharide utilisation loci from both stations, suggesting laminarin-specificity for four and specificity for sulfated xylans for two loci. In addition, one locus from the polar station supported use of non-sulfated xylans and mannans, possibly of plant origin. While peptides likely represent a prime source of carbon for Bacteroidetes in open oceans, our data suggest that as yet unstudied clades of these Bacteroidetes have a surprisingly broad capacity for polysaccharide degradation. In particular, laminarin-specific PULs seem widespread and thus must be regarded as globally important.


Subject(s)
Bacteroidetes/metabolism , Polysaccharides/metabolism , Water Microbiology , Animals , Atlantic Ocean , Greenland , Plankton/metabolism
6.
Elife ; 5: e11888, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27054497

ABSTRACT

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Eutrophication , Plankton/microbiology , Seawater/microbiology , Bacteria/genetics , Germany , Metagenomics , North Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...