Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Plant Sci ; 26(5): 496-508, 2021 05.
Article in English | MEDLINE | ID: mdl-33358304

ABSTRACT

Light spectral composition influences plant growth and metabolism, and has important consequences for interactions with plant-feeding arthropods and their natural enemies. In greenhouse horticulture, light spectral composition can be precisely manipulated by light-emitting diodes (LEDs), and LEDs are already used to optimize crop production and quality. However, because light quality also modulates plant secondary metabolism and defense, it is important to understand the underlying mechanisms in the context of the growth-defense trade-off. We review the effects of the spectral composition of supplemental light currently used, or potentially used, in greenhouse horticulture on the mechanisms underlying plant growth and defense. This information is important for exploring opportunities to optimize crop performance and pest management, and thus for developing resilient crop-production systems.


Subject(s)
Lighting , Plant Development , Crop Production , Light , Plants
2.
Annu Rev Phytopathol ; 49: 157-74, 2011.
Article in English | MEDLINE | ID: mdl-21663436

ABSTRACT

This review focuses on the detection of diseased plants by analysis of volatile organic compound (VOC) emissions. It includes an overview of studies that report on the impact of infectious and noninfectious diseases on these emissions and discusses the specificity of disease-induced emissions. The review also provides an overview of processes that affect the gas balance of plant volatiles, including their loss processes. These processes are considered as important because they contribute to the time-dynamic concentration profiles of plant-emitted volatiles. In addition, we describe the most popular techniques currently in use to measure volatiles emitted from plants, with emphasis on agricultural application. Dynamic sampling coupled with gas chromatography and followed by an appropriate detector is considered as the most appropriate method for application in agriculture. It is recommended to evaluate the state-of-the-art in the fields concerned with this method and to explore the development of a new instrument based on the specific needs for application in agricultural practice. However, to apply such an instrument in agriculture remains a challenge, mainly due to high costs.


Subject(s)
Agriculture/methods , Plant Diseases/microbiology , Plants/chemistry , Volatile Organic Compounds/analysis , Agriculture/trends , Animals , Crops, Agricultural/chemistry , Humans , Plants/metabolism , Volatile Organic Compounds/metabolism , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...