Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 433(24): 167309, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34687713

ABSTRACT

The NLRP3 inflammasome assembles in response to a variety of pathogenic and sterile danger signals, resulting in the production of interleukin-1ß and interleukin-18. NLRP3 is a key component of the innate immune system and has been implicated as a driver of a number of acute and chronic diseases. We report the 2.8 Å crystal structure of the NLRP3 NACHT domain in complex with an inhibitor. The structure defines a binding pocket formed by the four subdomains of the NACHT domain, and shows the inhibitor acts as an intramolecular glue, which locks the protein in an inactive conformation. It provides further molecular insight into our understanding of NLRP3 activation, helps to detail the residues involved in subdomain coordination within the NLRP3 NACHT domain, and gives molecular insights into how gain-of-function mutations de-stabilize the inactive conformation of NLRP3. Finally, it suggests stabilizing the auto-inhibited form of the NACHT domain is an effective way to inhibit NLRP3, and will aid the structure-based development of NLRP3 inhibitors for a range of inflammatory diseases.


Subject(s)
Inflammasomes/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Furans/chemistry , Furans/pharmacology , Humans , Indenes/chemistry , Indenes/pharmacology , Inflammasomes/metabolism , Protein Domains , Sulfonamides/chemistry , Sulfonamides/pharmacology
2.
J Neurodev Disord ; 5(1): 8, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23548045

ABSTRACT

BACKGROUND: Hypermethylation of the fragile X mental retardation 1 gene FMR1 results in decreased expression of FMR1 protein FMRP, which is the underlying cause of Fragile X syndrome - an incurable neurological disorder characterized by mental retardation, anxiety, epileptic episodes and autism. Disease-modifying therapies for Fragile X syndrome are thus aimed at treatments that increase the FMRP expression levels in the brain. We describe the development and characterization of two assays for simple and quantitative detection of FMRP protein. METHOD: Antibodies coupled to fluorophores that can be employed for time-resolved Förster's resonance energy transfer were used for the development of homogeneous, one-step immunodetection. Purified recombinant human FMRP and patient cells were used as control samples for assay development. RESULTS: The assays require small sample amounts, display high stability and reproducibility and can be used to quantify endogenous FMRP in human fibroblasts and peripheral blood mononuclear cells. Application of the assays to FXS patient cells showed that the methods can be used both for the characterization of clinical FXS patient samples as well as primary readouts in drug-discovery screens aimed at increasing endogenous FMRP levels in human cells. CONCLUSION: This study provides novel quantitative detection methods for FMRP in FXS patient cells. Importantly, due to the simplicity of the assay protocol, the method is suited to be used in screening applications to identify compounds or genetic interventions that result in increased FMRP levels in human cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...