Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 97(3): 421-430, 2021.
Article in English | MEDLINE | ID: mdl-33264581

ABSTRACT

PURPOSE: The effects of the electromagnetic (EM) radiation emitted by a mobile phone on the central auditory system of rabbits are investigated in this paper. Auditory brainstem response (ABR) measurements were performed before and after short-term exposure to EM radiation. MATERIALS AND METHODS: Excitation was provided by a GSM-1800 emitter placed in contact with the (randomly selected) ear of the anesthetized rabbit/subject. The latency of waves I, II, III, IV, V and the interpeak latencies I-III, I-V, III-V were recorded, for both ears, before (baseline recordings) and after 1, 15, 30, 45 and 60 minutes of exposure to the EM radiation. The repeated measures one-way analysis of variance (ANOVA) followed by the post hoc Tukey test for pairwise comparisons was performed in order to decide about the significance of the results. RESULTS: The statistical tests indicated that, as regards the ear ipsilateral to the radiating module, the mean latencies of waves I, II, III, IV, V, I-III, I-IV after 60 min exposure, the mean latencies of waves I, III, IV, V, I-III, I-IV after 45 min exposure and the mean latencies of waves I, III, IV, V, I-IV after 30 min exposure, were significantly prolonged compared to the corresponding baseline values. Statistically significant differences were also found for certain peak and interpeak latencies for 60 min exposure as compared with the corresponding results for 1 min and 15 min exposure. No statistically significant delay was observed for the latencies before and after the exposure, for the ear contralateral to the radiation source. CONCLUSIONS: Although we found that more than 30 min exposure to GSM-1800 radiation resulted in prolongation of certain ABR components of rabbits, further investigation may be needed into the potential adverse effects on the auditory pathways.


Subject(s)
Electromagnetic Fields/adverse effects , Evoked Potentials, Auditory, Brain Stem/radiation effects , Animals , Rabbits , Reaction Time/radiation effects
2.
Audiol Neurootol ; 16(4): 270-6, 2011.
Article in English | MEDLINE | ID: mdl-21079392

ABSTRACT

The objective of the present study was to investigate the possible electrophysiological time-related changes in auditory pathway during mobile phone electromagnetic field exposure. Thirty healthy rabbits were enrolled in an experimental study of exposure to GSM-900 radiation for 60 min and auditory brainstem responses (ABRs) were recorded at regular time-intervals during exposure. The study subjects were radiated via an adjustable power and frequency radio transmitter for GSM-900 mobile phone emission simulation, designed and manufactured according to the needs of the experiment. The mean absolute latency of waves III-V showed a statistically significant delay (p < 0.05) after 60, 45 and 15 min of exposure to electromagnetic radiation of 900 MHz, respectively. Interwave latency I-III was found to be prolonged after 60 min of radiation exposure in correspondence to wave III absolute latency delay. Interwave latencies I-V and III-V were found with a statistically significant delay (p < 0.05) after 30 min of radiation. No statistically significant delay was found for the same ABR parameters in recordings from the ear contralateral to the radiation source at 60 min radiation exposure compared with baseline ABR. The ABR measurements returned to baseline recordings 24 h after the exposure to electromagnetic radiation of 900 MHz. The prolongation of interval latencies I-V and III-V indicates that exposure to electromagnetic fields emitted by mobile phone can affect the normal electrophysiological activity of the auditory system, and these findings fit the pattern of general responses to a stressor.


Subject(s)
Electromagnetic Fields , Evoked Potentials, Auditory, Brain Stem/radiation effects , Animals , Cell Phone , Electrophysiology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...