Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 273(33): 20712-20, 1998 Aug 14.
Article in English | MEDLINE | ID: mdl-9694813

ABSTRACT

Cellular retinaldehyde-binding protein (CRALBP) carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the retinal pigment epithelium (RPE) and Müller cells of the retina and has been linked with autosomal recessive retinitis pigmentosa. Ligand interactions determine the physiological role of CRALBP in the RPE where the protein is thought to function as a substrate carrier for 11-cis-retinol dehydrogenase in the synthesis of 11-cis-retinal for visual pigment regeneration. However, CRALBP is also present in optic nerve and brain where its natural ligand and function are not yet known. We have characterized the interactions of retinoids with native bovine CRALBP, human recombinant CRALBP (rCRALBP) and five mutant rCRALBPs. Efforts to trap and/or identify a Schiff base in the dark, under a variety of reducing, denaturing, and pH conditions were unsuccessful, suggesting the lack of covalent interactions between CRALBP and retinoid. Buried and solvent-exposed lysine residues were identified in bovine CRALBP by reductive methylation of the holoprotein followed by denaturation and reaction with [3H]acetic anhydride. Radioactive lysine residues were identified by Edman degradation and electrospray mass spectrometry following proteolysis and purification of modified peptides. Human rCRALBP mutants K152A, K221A, and K294A were prepared to investigate possible retinoid interactions with buried or partially buried lysines. Two other rCRALBP mutants, I162V and Q210R, were also prepared to identify substitutions altering the retinoid binding properties of a random mutant. The structures of all the mutants were verified by amino acid and mass spectral analyses and retinoid binding properties evaluated by UV-visible and fluorescence spectroscopy. All of the mutants bound 11-cis-retinal essentially like the wild type protein, indicating that the proteins were not grossly misfolded. Three of the mutants bound 9-cis-retinal like the wild type protein; however, Q210R and K221A bound less than stoichiometric amounts of the 9-cis-isomer and exhibited lower affinity for this retinoid relative to wild type rCRALBP. Residues Gln-210 and Lys-221 are located within a region of CRALBP exhibiting sequence homology with the ligand binding cavity of yeast phosphatidylinositol-transfer protein. The data implicate Gln-210 and Lys-221 as components of the CRALBP retinoid binding cavity and are discussed in the context of ligand interactions in structurally or functionally related proteins with known crystallographic structures.


Subject(s)
Carrier Proteins/metabolism , Glycine/metabolism , Lysine/metabolism , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cattle , DNA Primers , Glycine/chemistry , Humans , Ligands , Lysine/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Solvents , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
2.
Protein Sci ; 7(3): 746-57, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9541407

ABSTRACT

Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Müller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein. Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 15-20% of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state 19F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies.


Subject(s)
Carrier Proteins/chemistry , Amino Acid Sequence , Animals , Cattle , Chromatography, High Pressure Liquid , Circular Dichroism , Hot Temperature , Humans , Light , Mass Spectrometry , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/analysis , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Recombinant Proteins , Retinoids/metabolism , Spectrophotometry, Ultraviolet , Structure-Activity Relationship
3.
Protein Sci ; 6(10): 2120-33, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9336835

ABSTRACT

Clusterin is a ubiquitous, heterodimeric glycoprotein with multiple possible functions that are likely influenced by glycosylation. Identification of oligosaccharide attachment sites and structural characterization of oligosaccharides in human serum clusterin has been performed by mass spectrometry and Edman degradation. Matrix-assisted laser desorption ionization mass spectrometry revealed two molecular weight species of holoclusterin (58,505 +/- 250 and 63,507 +/- 200). Mass spectrometry also revealed molecular heterogeneity associated with both the alpha and beta subunits of clusterin, consistent with the presence of multiple glycoforms. The data indicate that clusterin contains 17-27% carbohydrate by weight, the alpha subunit contains 0-30% carbohydrate and the beta subunit contains 27-30% carbohydrate. Liquid chromatography electrospray mass spectrometry with stepped collision energy scanning was used to selectively identify and preparatively fractionate tryptic glycopeptides. Edman sequence analysis was then used to confirm the identities of the glycopeptides and to define the attachment sites within each peptide. A total of six N-linked glycosylation sites were identified, three in the alpha subunit (alpha 64N, alpha 81N, alpha 123N) and three in the beta subunit (beta 64N, beta 127N, and beta 147N). Seven different possible types of oligosaccharide structures were identified by mass including: a monosialobiantennary structure, bisialobiantennary structures without or with one fucose, trisialotriantennary structures without or with one fucose, and possibly a trisialotriantennary structure with two fucose and/or a tetrasialotriantennary structure. Site beta 64N exhibited the least glycosylation diversity, with two detected types of oligosaccharides, and site beta 147N exhibited the greatest diversity, with five or six detected types of oligosaccharides. Overall, the most abundant glycoforms detected were bisialobiantennary without fucose and the least abundant were monosialobiantennary, trisialotriantennary with two fucose and/or tetrasialotriantennary. Clusterin peptides accounting for 99% of the primary structure were identified from analysis of the isolated alpha and beta subunits, including all Ser- and Thr-containing peptides. No evidence was found for the presence of O-linked or sulfated oligosaccharides. The results provide a molecular basis for developing a better understanding of clusterin structure-function relationships and the role clusterin glycosylation plays in physiological function.


Subject(s)
Glycoproteins/blood , Glycoproteins/chemistry , Molecular Chaperones , Oligosaccharides/metabolism , Amino Acid Sequence , Binding Sites , Chromatography, High Pressure Liquid , Clusterin , Glycosylation , Humans , Mass Spectrometry , Molecular Sequence Data , Molecular Weight , Oligosaccharides/chemistry , Peptide Fragments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...