Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 325: 138354, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36907481

ABSTRACT

Environmental contaminants like arsenic (As), cadmium (Cd), mercury (Hg) or lead (Pb) may disrupt hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes due to their endocrine toxicity potential. Resulting long-term physiological stress or adverse effects on wildlife reproduction and ontogeny may cause detrimental effects at the individual and population levels. However, data on environmental metal(loid)s' impact on reproductive and stress hormones in wildlife, especially large terrestrial carnivores, are scarce. Hair cortisol, progesterone and testosterone concentrations were quantified and modelled with hair As, Cd, total Hg, Pb, biological, environmental and sampling factors to test for potential effects in free-ranging brown bears (Ursus arctos) from Croatia (N = 46) and Poland (N = 27). Testosterone in males (N = 48) and females (N = 25) showed positive associations with Hg and an interaction between Cd and Pb, but a negative association with interaction between age and Pb. Higher testosterone was found in hair during its growth phase compared to quiescent phase. Body condition index was negatively associated with hair cortisol and positively associated with hair progesterone. Year and conditions of sampling were important for cortisol variation, while maturity stage for progesterone variation (lower concentrations in cubs and yearlings compared to subadult and adult bears). These findings suggest that environmental levels of Cd, Hg and Pb might influence the HPG axis in brown bears. Hair was shown to be a reliable non-invasive sample for investigating hormonal fluctuations in wildlife while addressing individual and sampling specificities.


Subject(s)
Mercury , Ursidae , Animals , Female , Male , Cadmium , Hydrocortisone , Progesterone , Lead , Animals, Wild , Hair
2.
Vet Med Sci ; 7(5): 2032-2038, 2021 09.
Article in English | MEDLINE | ID: mdl-33978314

ABSTRACT

Hair cortisol concentration (HCC) is being used increasingly to evaluate long-term stress in many mammalian species. Most of the cortisol is assumed to passively diffuse from circulating blood into hair follicles and gradually accumulate in growing hair. However, our research with free-ranging grizzly bears (Ursus arctos) suggests HCC increases significantly within several hours following capture, a time too brief to be explained by this mechanism alone. In this study with captive grizzly bears, we sought to determine if a brief spike in blood cortisol concentration, thus mimicking a single stressful event, would cause an increase in HCC over a 7-day period. To do this, we administered a single intravenous dose (5 µg/kg) of cosyntropin to three captive unanaesthetised adult female grizzly bears on two occasions, during April when hair growth was arrested and during August when hair was growing. In both trials, the cosyntropin caused a two-fold or greater increase in serum cortisol levels within 1 hr but did not appear to influence HCC at 1, 48, and 168 hr following cosyntropin administration. We conclude the cosyntropin-induced cortisol spike was likely insignificant when compared to the adrenocortical response that occurs in free-ranging bears when captured. We suggest further study with a larger sample of captive bears to evaluate the combined effects of anaesthesia and multiple doses of cosyntropin administered over several hours would better simulate the adrenocortical response of free-ranging grizzly bears during capture.


Subject(s)
Ursidae , Animals , Cosyntropin , Female , Hair , Hydrocortisone , Ursidae/physiology
3.
Conserv Physiol ; 8(1): coaa003, 2020.
Article in English | MEDLINE | ID: mdl-32025304

ABSTRACT

Cortisol concentrations in hair are used increasingly as a biomarker of long-term stress in free-ranging wildlife. Cortisol is believed to be integrated into hair primarily during its active growth phase, typically occurring over weeks to months or longer periods, depending on latitude. Cortisol concentrations in hair thus reflect the activity of the hypothalamic-pituitary-adrenal axis over this time. However, local, independent cortisol secretion within the skin, which includes hair follicles, may also contribute to cortisol levels in growing hair. Methodological differences between studies include the measurement of cortisol in only the hair shaft (i.e. follicle absent, as with shaved hair) versus the whole hair (i.e. follicle present, as with plucked hair). If the concentration of cortisol in the follicle is high enough to influence the overall hair cortisol concentration (HCC), this could confound comparisons between studies using different types of hair samples (hair shafts vs. whole hair) and collection methods. Here, we test the hypothesis that cortisol present in follicles influences HCC. We compared HCC in paired subsamples of hair with and without follicles from 30 free-ranging Scandinavian brown bears (Ursus arctos) and observed significantly greater HCC in samples with follicles present. The effect of follicles remained significant also with sex and age of sampled bears taken into account in a linear mixed model. Finally, we provide an overview of collection methods and types of hair samples used for HCC analysis in 77 studies dealing with stress in wild mammal species. Our findings highlight the need to unify methods of hair collection and preparation to allow for valid comparisons, and to optimize labour input in ecophysiological studies.

4.
Conserv Physiol ; 6(1): coy001, 2018.
Article in English | MEDLINE | ID: mdl-29399362

ABSTRACT

Although combining genetic and endocrine data from non-invasively collected hair samples has potential to improve the conservation of threatened mammals, few studies have evaluated this opportunity. In this study, we determined if steroid hormone (testosterone, progesterone, estradiol and cortisol) concentration profiles in 169 hair samples collected from free-ranging brown bears (Ursus arctos) could be used to accurately discriminate between immature and adult bears within each sex. Because hair samples were acquired opportunistically, we also needed to establish if interactions between hormones and several non-hormone factors (ordinal day, year, contact method, study area) were associated with age class. For each sex, we first compared a suite of candidate models by Akaike Information Criteria model selection, using different adult-age thresholds (3, 4 and 5 years), to determine the most supported adult age. Because hair hormone levels better reflect the endocrine state at an earlier time, possibly during the previous year, then at the time of sampling, we re-analysed the data, excluding the records for bears at the adult-age threshold, to establish if classification accuracy improved. For both sexes, candidate models were most supported based on a 3-year-old adult-age threshold. Classification accuracy did not improve with the 3-year-old bear data excluded. Male age class was predicted with a high degree of accuracy (88.4%) based on the concomitant concentrations of all four hormones. Female age class was predicted with less accuracy (77.1%) based only on testosterone and cortisol. Accuracy was reduced for females, primarily because we had poor success in correctly classifying immature bears (60%) whereas classification success for adult females was similar to that for males (84.5%). Given the small and unbalanced sample used in this study, our findings should be viewed as preliminary, but they should also provide a basis for more comprehensive future studies.

5.
Conserv Physiol ; 5(1): cox021, 2017.
Article in English | MEDLINE | ID: mdl-28852516

ABSTRACT

The measurement of naturally occurring glucocorticoids and stable isotopes of several elements has gained importance in wildlife studies in recent decades and opened a myriad of ecological applications. Cortisol and stable isotopes equilibrate in animal tissues over periods of integration related to the growth rate of the tissue, providing information reflecting systemic cortisol secretion and dietary intake. Sample preparation shares the common step of first cleaning the sample of external contamination. However, it is not well understood how different solvents used in sample preparation affect isotopic and cortisol values, and whether it is safe to follow the same procedures for both measures to optimize analyses of the same sample. We conducted an experiment to compare different preparation protocols for the analysis of cortisol concentrations and stable carbon (δ13C) and nitrogen (δ15N) isotope ratios in hair. Hair samples from 12 brown bears (Ursus arctos) were each divided into five aliquots; two aliquots were rinsed with a 2:1 chloroform:methanol (v/v) mixture with one aliquot ground prior to cortisol analysis and the other left intact for stable isotope analyses; two aliquots were washed with methanol with one aliquot ground prior to cortisol analysis and the other left intact for stable isotope analyses; and one aliquot washed with methanol and ground prior to stable isotope analyses. The cortisol, δ13C and δ15N values remained consistent following all treatments. Our results indicate that hair samples rinsed with a 2:1 chloroform:methanol mixture or washed with methanol can be used for both types of analyses. Further, hair that has been ground in a standard hair cortisol procedure can also be used for stable isotope analysis. This information is important for improving laboratory efficiency and compatibility of procedures used for wildlife physiological ecology studies where concurrent measurements of cortisol and stable isotopes in hair are required.

6.
Conserv Physiol ; 5(1): cox032, 2017.
Article in English | MEDLINE | ID: mdl-28580147

ABSTRACT

Recognizing the potential value of steroid hormone measurements to augment non-invasive genetic sampling, we developed procedures based on enzyme-linked immunoassays to quantify reproductive steroid hormone concentrations in brown bear (Ursus arctos) hair. Then, using 94 hair samples collected from eight captive adult bears over a 2-year period, we evaluated (i) associations between hair concentrations of testosterone, progesterone, estradiol and cortisol; (ii) the effect of collecting by shaving vs. plucking; and (iii) the utility of reproductive hormone profiles to differentiate sex and reproductive state. Sample requirements (125 mg of guard hair) to assay all hormones exceeded amounts typically obtained by non-invasive sampling. Thus, broad application of this approach will require modification of non-invasive techniques to collect larger samples, use of mixed (guard and undercoat) hair samples and/or application of more sensitive laboratory procedures. Concentrations of hormones were highly correlated suggesting their sequestration in hair reflects underlying physiological processes. Marked changes in hair hormone levels during the quiescent phase of the hair cycle, coupled with the finding that progesterone concentrations, and their association with testosterone levels, differed markedly between plucked and shaved hair samples, suggests steroids sequestered in hair were likely derived from various sources, including skin. Changes in hair hormone concentrations over time, and in conjunction with key reproductive events, were similar to what has been reported concerning hormonal changes in the blood serum of brown bears. Thus, potential for the measurement of hair reproductive hormone levels to augment non-invasive genetic sampling appears compelling. Nonetheless, we are conducting additional validation studies on hair collected from free-ranging bears, representative of all sex, age and reproductive classes, to fully evaluate the utility of this approach for brown bear conservation and research.

7.
MethodsX ; 4: 68-75, 2017.
Article in English | MEDLINE | ID: mdl-28203534

ABSTRACT

Methodological differences among laboratories are recognized as significant sources of variation in quantification of hair cortisol concentration (HCC). An important step in processing hair, particularly when collected from wildlife, is the choice of solvent used to remove or "wash" external hair shaft cortisol prior to quantification of HCC. The present study systematically compared methanol and isopropanol as wash solvents for their efficiency at removing external cortisol without extracting internal hair shaft cortisol in samples collected from free-ranging grizzly bears and polar bears. Cortisol concentrations in solvents and hair were determined in each of one to eight washes of hair with each solvent independently. •There were no significant decreases in internal hair shaft cortisol among all eight washes for either solvent, although methanol removed detectable hair surface cortisol after one wash in grizzly bear hair whereas hair surface cortisol was detected in all eight isopropanol washes.•There were no significant differences in polar bear HCC washed one to eight times with either solvent, but grizzly bear HCC was significantly greater in hair washed with isopropanol compared to methanol.•There were significant differences in HCC quantified using different commercial ELISA kits commonly used for HCC determinations.

8.
Parasitol Res ; 112(5): 2075-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23471781

ABSTRACT

The scraping and counting technique (SCT), with sensitivity values close to 100 %, has been the protocol recommended by global regulatory bodies for the extraction of Echinococcus cestodes from the intestines of wild carnivores. The proposed scraping, filtration and counting technique (SFCT) maintained the sensitivity (p = 0.801, α = 0.05) and increased the efficiency of sample processing. SCT had sensitivity and negative predictive value of 91 and 97 %, respectively, when compared to SFCT. The SFCT significantly decreased processing time (p = 0.0001, α = 0.05) for each sample. The SFCT took an average of 68.5 min less to quantify than SCT, as the SFCT samples consistently contained less debris. The SFCT is therefore appealing for general post-mortem surveillance, to determine if prevalence and intensity of infection are changing in an established region, or if these important parasitic zoonoses are newly established in a region or host species.


Subject(s)
Animals, Wild/parasitology , Canidae/parasitology , Echinococcosis/veterinary , Echinococcus/isolation & purification , Intestines/parasitology , Parasitology/methods , Animals , Coyotes/parasitology , Echinococcosis/epidemiology , Echinococcosis/parasitology , Echinococcus multilocularis/isolation & purification , Foxes/parasitology , Prevalence , Sensitivity and Specificity , Wolves/parasitology , Zoonoses/epidemiology , Zoonoses/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...