Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7307, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538805

ABSTRACT

An efficient and reproducible growth of vertically aligned carbon nanotubes by CCVD requires accurate and specific setting of the synthesis parameters and the properties of catalyst thin layers. In this work, the growth of vertically aligned carbon nanotubes onto AZO (= aluminum doped zinc oxide) glass substrate covered by Al2O3 and Fe-Co catalyst layer system is presented. Investigation of the effect of catalyst composition and synthesis temperature on CVD growth revealed the optimum condition of the synthesis. The analysis of as-prepared samples by SEM, TEM and Raman spectroscopy was carried out to prove the structure and quality of carbon deposit. Theoretical considerations have supported speculative ideas about the role of the support layer, the transformation of the catalyst layer in the presence of hydrogen gas and the growth mechanism of carbon nanotubes. The mechanism of CNT growth is modelled and the order of magnitude of experimentally observed vertical linear growth rate of CNT (several nm/s) is reproduced.

2.
Materials (Basel) ; 16(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049208

ABSTRACT

Excellent thermal conductivity is beneficial for the fast heat release during service of cemented carbides. Thus, thermal conductivity is a significant property of cemented carbides, considerably affecting their service life. Still, there is a lack of systematic investigation into the thermal conductivity of two-phase WC-Co-Ni cemented carbides. To remedy this situation, we integrated experiments and models to study its thermal conductivity varying the phase composition, temperature and WC grain size. To conduct the experiments, WC-Co-Ni samples with two-phase structure were designed via the CALPHAD (Calculation of Phase Diagrams) approach and then prepared via the liquid-phase sintering process. Key thermal conductivity measurements of these prepared samples were then taken via LFA (Laser Flash Analysis). As for modeling, the thermal conductivities of (Co, Ni) binder phase and WC hard phase were firstly evaluated through our previously developed models for single-phase solid solutions. Integrating the present key measurements and models, the values of ITR (Interface Thermal Resistance) between WC hard phase and (Co, Ni) binder phase were evaluated and thus the model to calculate thermal conductivity of two-phase WC-Co-Ni was established. Meanwhile, this model was verified to be reliable through comparing the model-evaluated thermal conductivities with the experimental data. Furthermore, using this developed model, the thermal conductivity of two-phase WC-Co-Ni varying with phase-fraction, temperature and grain size of WC was predicted, which can contribute to its design for obtaining desired thermal conductivities.

3.
Langmuir ; 39(18): 6316-6323, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37102789

ABSTRACT

Nanocomposites show the best performance when their reinforcing phase precipitates in situ from a matrix upon heat treatment and when coherency between the matrix and the reinforcing phase is preserved even upon coarsening the precipitated particles. In this paper, first a new equation is derived for the interfacial energy of strained coherent interfaces. From here, a new design rule is derived in a form of a new dimensionless number to select phase combinations for in situ coherent nanocomposites (ISCNCs). This is calculated from the molar volume mismatch between the two phases, their elastic constants, and the modeled interfacial energy between them. When this dimensionless number is smaller than a critical value, ISCNCs are formed. The critical value of this dimensionless number is found here using experimental data for the Ni-Al/Ni3Al superalloy. The validity of the new design rule was confirmed on the Al-Li/Al3Li system. An algorithm is suggested to apply the new design rule. Our new design rule can be simplified to more easily available initial parameters: if the matrix and the precipitate have the same cubic crystal structure the precipitate is expected to form ISCNCs with that matrix if their standard molar volumes differ less than by about 2%.

4.
Materials (Basel) ; 16(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36676513

ABSTRACT

Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash-dry-calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well. Our methodology was chemical thermodynamics, analyzing solubilities of metal chlorides, metal oxides and metal hydroxides in water and also standard molar Gibbs energy changes accompanying the following: (i) the reaction between metal chlorides and NaOH; (ii) the dissociation reaction of metal hydroxides into metal oxide and water vapor and (iii) the reaction between metal oxides and gaseous carbon dioxide to form metal carbonates. The major result of this paper is that the following metal-oxide NPs can be produced by the above technology from the corresponding metal chlorides: Al2O3, BeO, CaO, CdO, CoO, CuO, FeO, Fe2O3, In2O3, La2O3, MgO, MnO, Nd2O3, NiO, Pr2O3, Sb2O3, Sm2O3, SnO, Y2O3 and ZnO. From the analysis of the literature, the following nine nano-oxides have been already obtained experimentally with this technology: CaO, CdO, Co3O4, CuO, Fe2O3, NiO, MgO, SnO2 and ZnO (note: Co3O4 and SnO2 were obtained under oxidizing conditions during calcination in air). Thus, it is predicted here that the following nano-oxides can be potentially synthesized with this technology in the future: Al2O3, BeO, In2O3, La2O3, MnO, Nd2O3, Pr2O3, Sb2O3, Sm2O3 and Y2O3. The secondary result is that among the above 20 nano-oxides, the following five nano-oxides are able to capture carbon dioxide from air at least down to 42 ppm residual CO2-content, i.e., decreasing the current level of 420 ppm of CO2 in the Earth's atmosphere at least tenfold: CaO, MnO, MgO, CdO, CoO. The tertiary result is that by mixing the AuCl3 solution with NaOH solution, Au nano-particles will precipitate without forming Au-oxide NPs. The results are significant for the synthesis of metal nano-oxide particles and for capturing carbon dioxide from air.

5.
Phys Chem Chem Phys ; 24(36): 22278-22288, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36098238

ABSTRACT

The surface melting of macro-crystals and melting of nano-crystals for Al, Cu and Ag pure components are modeled in comparison with literature data. The relevant temperatures of surface premelting and melting are calculated. The corresponding temperature-dependent equilibrium thickness of the liquid melted layer is obtained as well, which tends to infinity when the temperature is at the bulk melting point. Furthermore, the size-dependent melting behaviors for Al, Cu and Ag are investigated and the corresponding critical size is determined using a home-made code. The melting point depression with particle size is also demonstrated in the present work. As illustrated in the size-dependent phase diagram, the temperatures of both the solidus and liquidus decrease and they merge with the decrease in the radius.

6.
Adv Colloid Interface Sci ; 283: 102212, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32781298

ABSTRACT

In this paper first a generally valid model is derived from the two fundamental equations of Gibbs for temperature and composition dependences of all types of interfacial energies. This general model is applied here to develop a coherent set of particular model equations for surface tension of liquid metals and alloys, for surface energy of solid metals and alloys, for high-angle grain boundary energy in metals and alloys, for solid/liquid interfacial energy in metals and alloys, for liquid/liquid interfacial energy in alloys and for solid/solid interfacial energy in metals and alloys. The latter case is sub-divided into models on coherent, incoherent and semi-coherent interfaces with the same phases and with different phases on the two sides of the interface. Model parameters are given here as an example for the 111 plane of fcc metals and alloys. For other crystal planes or other crystal structures the model parameters should be adjusted, while the model equations remain the same. The method is demonstrated on various surface and interfacial energies of pure Au, on solid/liquid interfacial energy in the AlCu system, on different types of solid/solid interfacial energies in the AuNi system, on solid/solid, solid/liquid and liquid/liquid interfacial energies in the AlPb system and on the coherent, incoherent and semi-coherent interfacial energies between ordered and disordered fcc phases in the Ni-rich part of the NiAl system. The ability of this method is demonstrated to predict surface and interface transition along free surfaces and grain boundaries and also negative interfacial energies in nano-systems.

7.
Heliyon ; 6(7): e04415, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685733

ABSTRACT

The best possible methods are needed to evaluate the scientific excellence of individuals and research groups in order to award positions and distribute research grants with higher efficiency. It is shown here that for the symmetrical distribution of citations of an individual the currently used h-index is approximately half of the square root of the total number of citations, according to the rule of Hirsch. It is also shown that deviations from this "ideal" h-index are common and they are due to deviations in the citation distributions of different individuals. However, those deviations are not characteristic for the scientific excellence of an individual and therefore they lead only to confusion in scientific evaluation. Therefore the h-index is suggested here to be replaced by the k-index. The k-index of an individual is calculated from his/her all independent citations as self-citations cannot be considered as an indication of the excellence of any paper or its authors (the citation is independent if there is no overlap in the lists of authors of the citing and the cited paper). The k-index takes into account only partial citations for each author of multi-authored papers. In ideal case the shares of the authors in a paper are published in the same paper similarly as shares of the inventors are published in patents. If not, the share of each co-author is taken equal to the inverse of the number of authors of the given paper. The k-index of an individual is defined as the square root from the sum of his/her independent partial citations. The value of the k-index is dependent on the databank used for the citations and on the time of the measurement. If scientists of similar age working in similar fields are compared using the same databank, their personal scientific excellence will be proportional to their k-index. When the k-index is divided by the number of active scientific years, a correction can be made for different ages of different applicants. In average, the k-index has similar values, but a wider range compared to the h-index. More importantly the k-index is not biased by this or that type of citation distribution of an individual, not biased by the self-citations and not biased by the results of the co-authors. The squares of k-indexes of smaller units are additive, and so the k-index is extended to journals, publishing houses, departments, institutions, countries, continents and to the mankind.

8.
Langmuir ; 35(33): 10987-10992, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31355648

ABSTRACT

The Butler equation was published in 1932 to describe the equilibrium surface composition and equilibrium surface tension of solutions. Unfortunately, it used the so-called "partial surface tension of a component", which was not properly defined by Butler, leading to a reluctant acceptance of this equation. Although the present author defined the partial surface tension recently in this journal, it is considered an advantage to derive the same key equations of Butler without the need to employ the concept of partial surface tension. This derivation is offered in the present paper, starting from the two fundamental equations of Gibbs. No assumptions are made on the thickness and structure of the surface region, it is only supposed that the surface region has an average composition with a negligible concentration gradient. In this way, the Butler equations are obtained, which have more general validity compared to the original Butler equations derived by supposing a surface monolayer.

9.
Adv Colloid Interface Sci ; 256: 163-192, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29705027

ABSTRACT

In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science.

10.
Langmuir ; 33(40): 10550-10560, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28918625

ABSTRACT

The condition of negative surface tension of a binary regular solution is discussed in this paper using the recently reconfirmed Butler equation (Langmuir 2015, 31, 5796-5804). It is shown that the surface tension becomes negative only for solutions with strong repulsion between the components. This repulsion for negative surface tension should be so strong that this phenomenon appears only within a miscibility gap, that is, in a two-phase region of macroscopic liquid solutions. Thus, for a macroscopic solution, the negative surface tension is possible only in a nonequilibrium state. However, for a nano-solution, negative surface tension is also possible in equilibrium state. It is also shown that nano- and microemulsions can be thermodynamically stable against both coalescence and phase separation. Further, the thermodynamic theory of emulsion stability is developed for a three-component (A-B-C) system with A-rich droplets dispersed in a C-rich matrix, separated by the segregated B-rich layer (the solubility of B is limited in both A and C while the mutual solubility of A and C is neglected). It is shown that when a critical droplet size is achieved by forced emulsification, it is replaced by spontaneous emulsification and the droplet size is reduced further to its equilibrium value. The existence of maximum temperature of emulsion stability is shown. Using low-energy emulsification below this maximum temperature, spontaneous emulsification can appear, which is enhanced with further decrease of temperature. This finding can be applied to interpret the experimental observations on spontaneous emulsification or for the design of stable micro- and nanoemulsions.

12.
J Phys Chem C Nanomater Interfaces ; 120(3): 1881-1890, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26877829

ABSTRACT

Heat effects for the addition of Co in bulk and nanosized forms into the liquid Sn-3.8Ag-0.7Cu alloy were studied using drop calorimetry at four temperatures between 673 and 1173 K. Significant differences in the heat effects between nano and bulk Co additions were observed. The considerably more exothermic values of the measured enthalpy for nano Co additions are connected with the loss of the surface enthalpy of the nanoparticles due to the elimination of the surface of the nanoparticles upon their dissolution in the liquid alloy. This effect is shown to be independent of the calorimeter temperature (it depends only on the dropping temperature through the temperature dependence of the surface energy of the nanoparticles). Integral and partial enthalpies of mixing for Co in the liquid SAC-alloy were evaluated from the experimental data.

13.
Langmuir ; 31(21): 5796-804, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25942049

ABSTRACT

First, extending the boundaries of the thermodynamic framework of Gibbs, a definition of the partial surface tension of a component of a solution is provided. Second, a formal thermodynamic relationship is established between the partial surface tensions of different components of a solution and the surface tension of the same solution. Third, the partial surface tension of a component is derived as a function of bulk and surface concentrations of the given component, using general equations for the thermodynamics of solutions. The above equations are derived without an initial knowledge of the Gibbs adsorption equation and without imposing any restrictions on the thickness or structure of the surface region of the solution. Only surface tension and the composition of the surface region are used as independent thermodynamic parameters, similar to Gibbs, who used only the surface tension of the solution and the relative surface excesses of the components. The final result formally coincides with the historical Butler equation (1932), but without its theoretical restrictions. (Butler used too many unnecessary model restrictions during his work: he started from the Gibbs adsorption equation, and he assumed the existence of a surface monolayer.) Thus, the renovated Butler equation has gained general validity in this article. It was applied to derive both the Langmuir equation and the Gibbs adsorption equation, but the latter two equations do not follow from each other. Thus, it is shown that logically (not historically) the renovated Butler equation is a root equation for surface tension and the adsorption of solutions. It can be used to perform calculations for specific systems if the corresponding specific experimental data/models are loaded into it. In this case, both surface tension and surface composition can be calculated from the renovated Butler equation, which cannot be done using the Gibbs adsorption equation alone.

14.
J Nanosci Nanotechnol ; 12(3): 2625-33, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755100

ABSTRACT

The Kelvin equation, the Gibbs equation and the Gibbs-Thomson equation are compared. It is shown that the Kelvin equation (on equilibrium vapor pressure above nano-droplets) can be derived if the inner pressure due to the curvature (from the Laplace equation) is substituted incorrectly into the external pressure term of the Gibbs equation. Thus, the Kelvin equation is excluded in its present form. The Gibbs-Thomson equation (on so-called equilibrium melting point of a nano-crystal) is an analog of the Kelvin equation, and thus it is also excluded in its present form. The contradiction between the critical nucleus size (from the Gibbs equation) and the so-called equilibrium melting point of nano-crystals (from the Gibbs-Thomson equation) is explained. The contradiction is resolved if the Gibbs equation is applied to study both nucleation and equilibrium of nano-crystals. Thus, the difference in the behavior of nano-systems compared to macro-systems is due to their high specific surface area (Gibbs) and not to the high curvature of their interface (Kelvin). Modified versions of the Kelvin equation and the Gibbs-Thomson equation are derived from the Gibbs equation for phases with a general shape and for a spherical phase.

15.
Adv Colloid Interface Sci ; 170(1-2): 87-8, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22208958
16.
J Nanosci Nanotechnol ; 10(12): 8164-70, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121311

ABSTRACT

The phase rule of Gibbs has been extended to nano-systems in this paper. For that, first the total number of atoms or stable molecules (N) in the system is selected as a new independent thermodynamic variable to characterize the size of nano-systems. N is preferred to r (the radius of the system) as the volume and radius are functions of other independent variables (p, T, composition) and therefore r is not an independent variable. As follows from the extended phase rule, the maximum number of phases and the degree of freedom at a given number of phases is increased by 1 for nano-systems compared to macro-systems, due to the new independent thermodynamic parameter N. The extended phase rule can serve as the basis to work out topological details of nano phase diagrams. As an example, an existence of a quaternary point is predicted in one component nano phase diagram of thallium (in contrast to usual one component phase diagrams with triple points at most). At given values of p = 7.2E-12 bar, T = 544 K, and N = 1.2E5, HCP (hexagonal closely packed solid), BCC (body centered cubic solid), liquid and vapour phases of pure TI are predicted to be in equilibrium.

SELECTION OF CITATIONS
SEARCH DETAIL
...