Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(4): 4819-4830, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38313516

ABSTRACT

One of the requirements of an efficient surface-enhanced Raman spectroscopy (SERS) substrate is a developed surface morphology with a high density of "hot spots", nm-scale spacings between plasmonic nanoparticles. Of particular interest are plasmonic architectures that could enable self-localization (enrichment) of the analyte in the hot spots. We report a straightforward method of fabrication of efficient SERS substrates that comply with these requirements. The basis of the substrate is a large-area film of tightly packed SiO2 spheres formed by their quick self-assembling upon drop casting from the solution. Thermally evaporated thin Ag layer is converted by quick thermal annealing into nanoparticles (NPs) self-assembled in the trenches between the silica spheres, i.e., in the places where the analyte molecules get localized upon deposition from solution and drying. Therefore, the obtained substrate morphology enables an efficient enrichment of the analyte in the hot spots formed by the densely arranged plasmonic NPs. The high efficiency of the developed SERS substrates is demonstrated by the detection of Rhodamine 6G down to 10-13 mol/L with an enhancement factor of ∼108, as well as the detection of low concentrations of various nonresonant analytes, both small dye molecules and large biomolecules. The developed approach to SERS substrates is very straightforward for implementation and can be further extended to using gold or other plasmonic NPs.

2.
Anal Biochem ; 681: 115328, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37722524

ABSTRACT

ZnO nanoparticles (NPs) with a flower-like morphology, synthesized by an affordable colloidal route using an aqueous fungi extract of Ganoderma lucidum as a reducing agent and stabilizer, are investigated as SERS-substrate. Each "flower" has large effective surface that is preserved at packing particles into a dense film and thus exhibits an advantageous property for SERS and similar sensing applications. The mycoextract used in our low-cost and green synthesis as surface stabilizer allows subsequent deposition of metal NPs or layers. One type of SERS substrates studied here was ZnO NPs decorated in situ in the solution by Ag NPs, another type was prepared by thermally evaporating Ag layer on the ZnO NP film on a substrate. A huge difference in the enhancement of the same analyte in the solution and in the dried form is found and discussed. Detection down to 10-7 M of standard dye analytes such as rhodamine 6G and methylene blue was achieved without additional optimization of the SERS substrates. The observed SERS-activity demonstrate the potential of both the free-standing flower-like ZnO NPs and thereof made dense films also for other applications where large surface area accessible for the external agent is crucial, such as catalysis or sensing.

3.
Nanomaterials (Basel) ; 13(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903799

ABSTRACT

The parameters of the shell and interface in semiconductor core/shell nanocrystals (NCs) are determinant for their optical properties and charge transfer but are challenging to be studied. Raman spectroscopy was shown earlier to be a suitable informative probe of the core/shell structure. Here, we report the results of a spectroscopic study of CdTe NCs synthesized by a facile route in water, using thioglycolic acid (TGA) as a stabilizer. Both core-level X-ray photoelectron (XPS) and vibrational (Raman and infrared) spectra show that using thiol during the synthesis results in the formation of a CdS shell around the CdTe core NCs. Even though the spectral positions of the optical absorption and photoluminescence bands of such NCs are determined by the CdTe core, the far-infrared absorption and resonant Raman scattering spectra are dominated by the vibrations related with the shell. The physical mechanism of the observed effect is discussed and opposed to the results reported before for thiol-free CdTe Ns as well as CdSe/CdS and CdSe/ZnS core/shell NC systems, where the core phonons were clearly detected under similar experimental conditions.

4.
Materials (Basel) ; 16(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36676289

ABSTRACT

Semiconductor quantum dots of the A2B6 group and organic semiconductors have been widely studied and applied in optoelectronics. This study aims to combine CdTe quantum dots and perylene-based dye molecules into advanced nanostructure system targeting to improve their functional properties. In such systems, new electronic states, a mixture of Wannier-Mott excitons with charge-transfer excitons, have appeared at the interface of CdTe quantum dots and the perylene dye. The nature of such new states has been analyzed by absorption and photoluminescence spectroscopy with picosecond time resolution. Furthermore, aggregation of perylene dye on the CdTe has been elucidated, and contribution of Förster resonant energy transfer has been observed between aggregated forms of the dye and CdTe quantum dots in the hybrid CdTe-perylene nanostructures. The studied nanostructures have strongly quenched emission of quantum dots enabling potential application of such systems in dissociative sensing.

5.
RSC Adv ; 12(33): 21591-21599, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35975078

ABSTRACT

We report a new pathway for the synthesis of plasmonic gold nanoparticles (Au NPs) in a bio-compatible medium. A modified room temperature approach based on the standard Turkevich synthesis, using sodium citrate as a reducing and stabilizing agent, results in a highly stable colloidal suspension of Au NPs in dimethyl sulfoxide (DMSO). The mean NP size of about 15 nm with a fairly low size distribution is revealed by scanning electron microscopy. The stability test through UV-vis absorption spectroscopy indicates no sign of aggregation for months. The Au NPs are also characterized by X-ray photoelectron, Raman scattering, and FTIR spectroscopies. The stabilisation mechanism of the Au NPs in DMSO is concluded to be similar to that of NPs synthesized in water. The Au NPs obtained in this work are applicable as SERS substrates, as proved by common analytes. In terms of bio-applications, they do not possess such side-effects as pronounced antibacterial activity, based on the tests performed on non-pathogenic Gram-positive or Gram-negative bacteria.

6.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34835686

ABSTRACT

Cu-Zn-Sn-Te (CZTTe) is an inexpensive quaternary semiconductor that has not been investigated so far, unlike its intensively studied CZTS and CZTSe counterparts, although it may potentially have desirable properties for solar energy conversion, thermoelectric, and other applications. Here, we report on the synthesis of CZTTe nanocrystals (NCs) via an original low-cost, low-temperature colloidal synthesis in water, using a small-molecule stabilizer, thioglycolic acid. The absorption edge at about 0.8-0.9 eV agrees well with the value expected for Cu2ZnSnTe4, thus suggesting CZTTe to be an affordable alternative for IR photodetectors and solar cells. As the main method of structural characterization multi-wavelength resonant Raman spectroscopy was used complemented by TEM, XRD, XPS as well as UV-vis and IR absorption spectroscopy. The experimental study is supported by first principles density functional calculations of the electronic structure and phonon spectra. Even though the composition of NCs exhibits a noticeable deviation from the Cu2ZnSnTe4 stoichiometry, a common feature of multinary NCs synthesized in water, the Raman spectra reveal very small widths of the main phonon peak and also multi-phonon scattering processes up to the fourth order. These factors imply a very good crystallinity of the NCs, which is further confirmed by high-resolution TEM.

7.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371226

ABSTRACT

The environment strongly affects both the fundamental physical properties of semiconductor nanocrystals (NCs) and their functionality. Embedding NCs in polymer matrices is an efficient way to create a desirable NC environment needed for tailoring the NC properties and protecting NCs from adverse environmental factors. Luminescent NCs in optically transparent polymers have been investigated due to their perspective applications in photonics and bio-imaging. Here, we report on the manifestations of photo-induced enhancement of photoluminescence (PL) of aqueous colloidal NCs embedded in water-soluble polymers. Based on the comparison of results obtained on bare and core/shell NCs, NCs of different compounds (CdSe, CdTe, ZnO) as well as different embedding polymers, we conclude on the most probable mechanism of the photoenhancement for these sorts of systems. Contrary to photoenhancement observed earlier as a result of surface photocorrosion, we do not observe any change in peak position and width of the excitonic PL. Therefore, we suggest that the saturation of trap states by accumulated photo-excited charges plays a key role in the observed enhancement of the radiative recombination. This suggestion is supported by the unique temperature dependence of the trap PL band as well as by power-dependent PL measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...