Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Med ; 227: 107658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704051

ABSTRACT

Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), interleukin 1-beta (IL-1ß), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.


Subject(s)
Chemokine CXCL12 , Computational Biology , Cytokines , Hypertension, Pulmonary , Hypoxia , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Cytokines/metabolism , Cytokines/genetics , Computational Biology/methods , Humans , Hypoxia/genetics , Hypoxia/metabolism , Animals , Mice , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Hypertension, Pulmonary/genetics , Chemokine CXCL9/genetics , Gene Expression Profiling , Male , Female , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Middle Aged
2.
J Cardiovasc Pharmacol ; 82(3): 180-188, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37341530

ABSTRACT

ABSTRACT: Cardiovascular diseases (CVDs) are the foremost cause of morbidity and mortality worldwide. Current clinical interventions include invasive approaches for progressed conditions and pharmacological assistance for initial stages, which has systemic side effects. Preventive, curative, diagnostic, and theranostic (therapeutic + diagnostic) approaches till date are not very useful in combating the ongoing CVD epidemic, which demands a promising efficient alternative approach. To combat the growing CVD outbreak globally, the ideal strategy is to make the therapeutic intervention least invasive and direct to the heart to reduce the bystander effects on other organs and increase the bioavailability of the therapeutics to the myocardium. The application of nanoscience and nanoparticle-mediated approaches have gained a lot of momentum because of their efficient passive and active myocardium targeting capability owing to their improved specificity and controlled release. This review provides extensive insight into the various types of nanoparticles available for CVDs, their mechanisms of targeting (eg, direct or indirect), and the utmost need for further development of bench-to-bedside cardiac tissue-based nanomedicines. Furthermore, the review aims to summarize the different ideas and methods of nanoparticle-mediated therapeutic approaches to the myocardium till date with present clinical trials and future perspectives. This review also reflects the potential of such nanoparticle-mediated tissue-targeted therapies to contribute to the sustainable development goals of good health and well-being.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Humans , Myocardium , Heart Diseases/diagnosis , Heart Diseases/drug therapy , Nanomedicine , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Heart
3.
Eur J Pharmacol ; 953: 175841, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37329972

ABSTRACT

Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo were performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all-atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.


Subject(s)
Heart Failure , PPAR gamma , Humans , PPAR gamma/metabolism , Interleukin-6 , PPAR-gamma Agonists , Molecular Docking Simulation , Cardiomegaly/pathology , Fibrosis
4.
Cell Signal ; 98: 110403, 2022 10.
Article in English | MEDLINE | ID: mdl-35835332

ABSTRACT

IKKγ prototypically promotes NFκBp65 activity by regulating the assembly of the IKK holocomplex. In hypertrophied cardiomyocytes, the p65-p300 complex-induced regenerative efforts are neutralized by the p53-p300 complex-mediated apoptotic load resulting in compromised cardiac function. The present study reports that nitrosative stress leads to S-Nitrosylation of IKKγ in hypertrophied cardiomyocytes in a pre-clinical model. Using a cardiomyocyte-targeted nanoconjugate, IKKγ S-Nitrosylation-resistant mutant plasmids were delivered to the pathologically hypertrophied heart that resulted in improved cardiac function by amelioration of cardiomyocyte apoptosis and simultaneous induction of their cell cycle re-entry machinery. Mechanistically, in IKKγ S-Nitrosyl mutant-transfected hypertrophied cells, increased IKKγ-p300 binding downregulated the binding of p53 and p65 with p300. This shifted the binding preference of p65 from p300 to HDAC1 resulting in upregulated expression of cyclin D1 and CDK2 via the p27/pRb pathway. This approach has therapeutic advantage over mainstream anti-hypertrophic remedies which concomitantly reduce the regenerative prowess of resident cardiomyocytes during hypertrophy upon downregulation of myocyte apoptosis. Therefore, cardiomyocyte-targeted delivery of IKKγ S-Nitrosyl mutants during hypertrophy can be exploited as a novel strategy to re-muscularize the diseased heart.


Subject(s)
I-kappa B Kinase , Myocytes, Cardiac , Cardiomegaly/pathology , Humans , I-kappa B Kinase/metabolism , Myocytes, Cardiac/metabolism , Nitrosative Stress , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...