Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Genet Genomics ; 294(2): 479-492, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30604071

ABSTRACT

The genetic basis of selection for geographic adaptation and how it has contributed to population structure are unknown in tossa jute (Corchorus olitorius), an important bast fibre crop. We performed restriction site-associated DNA (RAD) sequencing-based (1115 RAD-SNPs) population genomic analyses to investigate genetic differentiation and population structure within a collection of 221 fibre-type lines from across nine geographic regions of the world. Indian populations, with relatively higher overall diversity, were significantly differentiated (based on FST and PCA) from the African and the other Asian populations. There is strong evidence that African C. olitorius was first introduced in peninsular India that could perhaps be its secondary centre of origin. However, multiple later introductions have occurred in central, eastern and northern India. Based on four assignment tests with different statistical bases, we infer that two ancestral subpopulations (African and Indian) structure the C. olitorius populations, but not in accordance with their geographic origins and patterns of diversity. Our results advocate recent migration of C. olitorius through introduction and germplasm exchange across geographical boundaries. We argue that high intraspecific genetic admixture could be associated with increased genetic variance within Indian populations. Employing both subpopulation (FST/GST-outlier) and individual-based (PCAdapt) tests, we detected putative RAD-SNP loci under selection and demonstrated that bast fibre production was an artificial, while abiotic and biotic stresses were natural selection pressures in C. olitorius adaptation. By reinferring the population structure without outlier loci, we propose ad interim that C. olitorius was possibly domesticated as a fibre crop in the Indian subcontinent.


Subject(s)
Adaptation, Physiological/genetics , Corchorus/genetics , Genetics, Population , Selection, Genetic/genetics , Genetic Drift , Genomics , India , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
2.
Phytochemistry ; 156: 20-32, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30172937

ABSTRACT

Enzyme ß-galactosidase (EC 3.2.1.23) is known to influence vascular differentiation during early vegetative growth of plants, but its role in hypocotyl development is not yet fully understood. We generated the hypocotyl transcriptome data of a hypocotyl-defect jute (Corchorus capsularis L.) mutant (52,393 unigenes) and its wild-type (WT) cv. JRC-212 (44,720 unigenes) by paired-end RNA-seq and identified 11 isoforms of ß-galactosidase, using a combination of sequence annotation, domain identification and structural-homology modeling. Phylogenetic analysis classified the jute ß-galactosidases into six subfamilies of glycoside hydrolase-35 family, which are closely related to homologs from Malvaceous species. We also report here the expression of a ß-galactosidase of glycoside hydrolase-2 family that was earlier considered to be absent in higher plants. Comparative analysis of domain structure allowed us to propose a domain-centric evolution of the five classes of plant ß-galactosidases. Further, we observed 1.8-12.2-fold higher expression of nine ß-galactosidase isoforms in the mutant hypocotyl, which was characterized by slower growth, undulated shape and deformed cell wall. In vitro and in vivo ß-galactosidase activities were also higher in the mutant hypocotyl. Phenotypic analysis supported a significant (P ≤ 0.01) positive correlation between enzyme activity and undulated hypocotyl. Taken together, our study identifies the complete set of ß-galactosidases expressed in the jute hypocotyl, and provides compelling evidence that they may be involved in cell wall degradation during hypocotyl development.


Subject(s)
Corchorus/enzymology , Transcriptome/genetics , beta-Galactosidase/genetics , Corchorus/metabolism , Models, Molecular , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism
3.
Genom Data ; 12: 151-154, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28540183

ABSTRACT

Here, we present the draft genome (377.3 Mbp) of Corchorus olitorious cv. JRO-524 (Navin), which is a leading dark jute variety developed from a cross between African (cv. Sudan Green) and indigenous (cv. JRO-632) types. We predicted from the draft genome a total of 57,087 protein-coding genes with annotated functions. We identified a large number of 1765 disease resistance-like and defense response genes in the jute genome. The annotated genes showed the highest sequence similarities with that of Theobroma cacao followed by Gossypium raimondii. Seven chromosome-scale genetically anchored pseudomolecules were constructed with a total size of 8.53 Mbp and used for synteny analyses with the cocoa and cotton genomes. Like other plant species, gypsy and copia retrotransposons were the most abundant classes of repeat elements in jute. The raw data of our study are available in SRA database of NCBI with accession number SRX1506532. The genome sequence has been deposited at DDBJ/EMBL/GenBank under the accession LLWS00000000, and the version described in this paper will be the first version (LLWS01000000).

SELECTION OF CITATIONS
SEARCH DETAIL
...