Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Small ; : e2311157, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881263

ABSTRACT

This study demonstrates the enhanced performance in high-voltage sodium full cells using a novel electrolyte composition featuring a highly fluorinated borate ester anion (1 M Na[B(hfip)4].3DME) in a binary carbonate mixture (EC:EMC), compared to a conventional electrolyte (1 M Na[PF6] EC:EMC). The prolonged cycling performance of sodium metal battery employing high voltage cathodes (NVPF@C@CNT and NFMO) is attributed to uniform and dense sodium deposition along with the formation of fluorine and boron-rich solid electrolyte interphase (SEI) on the sodium metal anode. Simultaneously, a robust cathode electrolyte interphase (CEI) is formed on the cathode side due to the improved electrochemical stability window and superior aluminum passivation of the novel electrolyte. The CEIs on high-voltage cathodes are discovered to be abundant in C-F, B-O, and B-F components, which contributes to long-term cycling stability by effectively suppressing undesirable side reactions and mitigating electrolyte decomposition. The participation of DME in the primary solvation shell coupled with the comparatively weaker interaction between Na+ and [B(hfip)4]- in the secondary solvation shell, provides additional confirmation of labile desolvation. This, in turn, supports the active participation of the anion in the formation of fluorine and boron-rich interphases on both the anode and cathode.

2.
Angew Chem Int Ed Engl ; 63(30): e202405244, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38711382

ABSTRACT

Aqueous zinc-iodine (Zn-I2) batteries are gaining significant attention due to their low-cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al. recently reported the addition of an imidazolium-based ionic liquid (IL) to an aqueous electrolyte and found that the IL plays a key role in modifying the solvation of Zn2+ ions in the bulk electrolyte and the inner Helmholtz plane, repelling H2O molecules away from the Zn anode surface. UV/Vis and NMR spectroscopy also indicates a strong interaction between imidazolium cation [EMIM]+ and I3 -, thereby reducing polyiodide shuttling and enhancing the cycle life of the battery. Overall, a capacity decay rate of only 0.01 % per cycle after over 18,000 cycles at 4 A g-1, is observed, making the use of IL additives in aqueous electrolytes highly promising candidates for Zn-I2 batteries.

3.
Phys Chem Chem Phys ; 25(40): 27718-27730, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37814518

ABSTRACT

High-voltage sodium batteries are an appealing solution for economical energy storage applications. Currently available electrolyte materials have seen limited success in such applications therefore the identification of high-performing and safer alternatives is urgently required. Herein we synthesise six novel ionic liquids derived from two fluoroborate anions which have shown great promise in recent battery literature. This study reports for the first time the electrochemically applicable room-temperature ionic liquid (RTIL) N-ethyl-N,N,N-tris(2-(2-methoxyethoxy)ethyl)ammonium (tetrakis)hexafluoroisopropoxy borate ([N2(2O2O1)3][B(hfip)4]). The RTIL shows promising physical properties with a very low glass-transition at -73 °C and low viscosity. The RTIL exhibits an electrochemical window of 5.3 V on a glassy carbon substrate which enables high stability electrochemical cycling of sodium in a 3-electrode system. Of particular note is the strong passivation behaviour of [N2(2O2O1)3][B(hfip)4] on aluminium current-collector foil at potentials as high as 7 V (vs. Na+/Na) which is further improved with the addition of 50 mol% Na[FSI]. This study shows [B(hfip)4]- ionic liquids have the desired physical and electrochemical properties for high-voltage sodium electrolytes.

4.
Chem Rev ; 123(1): 491-514, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36417460

ABSTRACT

Thermal energy storage technologies utilizing phase change materials (PCMs) that melt in the intermediate temperature range, between 100 and 220 °C, have the potential to mitigate the intermittency issues of wind and solar energy. This technology can take thermal or electrical energy from renewable sources and store it in the form of heat. This is of particular utility when the end use of the energy is also as heat. For this purpose, the material should have a phase change between 100 and 220 °C with a high latent heat of fusion. Although a range of PCMs are known for this temperature range, many of these materials are not practically viable for stability and safety reasons, a perspective not often clear in the primary literature. This review examines the recent development of thermal energy storage materials for application with renewables, the different material classes, their physicochemical properties, and the chemical structural origins of their advantageous thermal properties. Perspectives on further research directions needed to reach the goal of large scale, highly efficient, inexpensive, and reliable intermediate temperature thermal energy storage technologies are also presented.

5.
ChemSusChem ; 14(13): 2757-2762, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-33982440

ABSTRACT

A dearth of inexpensive means of energy storage is constraining the expansion of intermittent renewable energy sources such as sun and wind. Thermal energy storage technology utilizing phase-change materials (PCMs) is a promising solution, enabling storage of large quantities of thermal energy at a relatively low cost. Guanidinium mesylate, which melts at 208 °C with latent heat of fusion of ΔHf =190 J g-1 is a promising PCM candidate for these applications.[1] Here, studies on guanidinium organic salts were conducted, including heat capacity, thermal conductivity, advanced thermal stability, long-term cycling, and economic analysis. The data place guanidinium mesylate among the best PCMs operating in the 100-220 °C temperature region in terms of thermal energy storage, with total volumetric energy storage measured as 622 MJ m-3 (173 kWh m-3 ). Additionally, it was shown to be stable during cycling, with over 400 cycles performed. Simple economic analysis indicated a cost of 6 USD per MJ of stored thermal energy. This study proves that guanidinium mesylate and potentially other similar salts can be feasible as PCMs for inexpensive energy storage for renewable energy storage applications.

6.
Chem Commun (Camb) ; 56(79): 11819-11822, 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33021275

ABSTRACT

Accelerated rate calorimetric studies have been employed to study the exothermic and thermal runaway behaviour of some aprotic and protic ionic liquids based on several families of ions including the bis(flurorsulfonyl)imide anion ([FSI]-); it was found that the protic salts are safer than aprotic salts of the [FSI]- anion.

7.
ChemSusChem ; 13(1): 159-164, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31657142

ABSTRACT

Thermal energy storage technology utilizing phase-change materials (PCMs) can be a promising solution for the intermittency of renewable energy sources. This work describes a novel family of PCMs based on the pyrazolium cation, that operate in the 100-200 °C temperature range, offering safe, inexpensive capacity and low supercooling. Thermal stability and extensive cycling tests of the most promising PCM candidate, pyrazolium mesylate (Tm =168±1 °C, ΔHf =160 J g-1 ±5 %, ΔHtotal v =495 MJ m-3 ±5 %) show potential for its use in thermal storage applications. Additionally, this work discusses the molecular origins of the high thermal energy storage capacity of these ionic materials based on their crystal structures, revealing the importance of hydrogen bonds in PCM performance.

8.
ACS Appl Mater Interfaces ; 11(15): 14101-14109, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30919631

ABSTRACT

Room-temperature sodium-sulfur (RT Na-S) battery cathodes suffer from poor conductivity, rapid dissolution of intermediate products, and potentially destructive volume change during cycling. The optimal way to minimize these problems could be a construction of a nanocomposite cathode scaffold combining different components selected for their particular functions. Here, we have combined the excellent electronic conductivity of reduced graphene oxide, polysulfide adsorption ability of the ultrafine manganese oxide nanocrystals, rapid ion/electron dissemination efficiency of nanosized sulfur, and outstanding mechanical stiffness and good electrical conductivity of Na alginate/polyaniline hybrid binder in a single electrode heterostructure. At 0.2 A g-1, an RT Na-S battery containing the freestanding cathode delivers an initial specific cap acity of 631 mA h g-1. By delivering a nominal discharge voltage of 1.81 V, our Na-S batteries bestow a high specific energy of 737 W h kg-1 at the 2nd cycle and 660 W h kg-1 was retained after 50 cycles. The effect of the amount of electrolyte additive is also well demonstrated in this study. The electrode fabrication process provides a new approach to tailor the design and preparation of effective cathodes for the room-temperature sodium-sulfur batteries.

9.
Angew Chem Int Ed Engl ; 58(13): 4390-4394, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30632254

ABSTRACT

The synthesis of a new imide type anion, methylcarbonate(trifluoromethylsulfonyl)imide (MCTFSI) is described and the physicochemical properties of its sodium and N-butyl-N-methyl pyrrolidinium salts as well as structural information obtained by X-ray diffraction studies of the sodium salt are discussed in terms of charge delocalisation, coordination chemistry and electrochemical behaviour with respect to the analogous imdides bis(trifluoromethanesulfonyl)imide (TFSI) and bis(fluorosulfonyl)imide (FSI). The insight obtained from studying the new anion informs and reemphasizes the concept of weakly coordinating anions and coordination chemistry in designing electrolyte salts.

10.
Chem Commun (Camb) ; 54(28): 3500-3503, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29564441

ABSTRACT

Sodium-ion batteries (SIBs) are widely considered as alternative, sustainable, and cost-effective energy storage devices for large-scale energy storage applications. In this work, an easily fabricated sodium vanadium phosphate-carbon composite (NVP@C) cathode material shows a good rate capability, and long cycle life (89% capacity retention after 5000 cycles at a rate of 10C) with an ionic liquid electrolyte for room temperature sodium metal batteries. The electrochemical performance of a full-cell sodium ion battery with NVP@C and hard carbon electrodes was also investigated at room temperature with an ionic liquid electrolyte. The battery exhibited 368 W h kg-1 energy density and 75% capacity retention after 100 cycles, outperforming the organic electrolyte-based devices.

11.
Faraday Discuss ; 206: 9-28, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29034392

ABSTRACT

In the field of ionic liquids (ILs) it has long been of fundamental interest to examine the transition from salt-in-solvent behaviour to pure liquid-salt behaviour, in terms of structures and properties. At the same time, a variety of applications have beneficially employed IL-solvent mixtures as media that offer an optimal set of properties. Their properties in many cases can be other than as expected on the basis of simple mixing concepts. Instead, they can reflect the distinct structural and interaction changes that occur as the mixture passes through the various stages from pure coulombic medium, to "plasticised" coulombic medium, into a meso-region where distinct molecular and ionic domains can co-exist. Such domains can persist to quite a high dilution into the salt-in-solvent regime and their presence manifests itself in a number of important synergistic interaction effects in diverse areas such as membrane transport and corrosion protection. Similarly, the use of ionic liquids in synthetic processes where there is a significant volume fraction of molecular species present can produce a variety of distinct and unexpected effects. The range of these salt-solvent mixtures is considerably broader than just those based on ionic liquids, since there is only minor value in the pure salt being a liquid at the outset. In other words, the extensive families of organic and metal salts become candidates for study and use. Our perspective then is of an evolution of ionic liquids into a broader field of fundamental phenomena and applications. This can draw on an even larger family of tuneable salts that exhibit an exciting combination of properties when mixed with molecular liquids.

12.
Phys Chem Chem Phys ; 19(26): 17461-17468, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28650511

ABSTRACT

The physicochemical properties of the ionic liquid N-ethyl-2-(2-methoxyethoxy)-N,N-bis(2-(2-methoxyethoxy)ethyl)ethan-1-ammonium bis(trifluoromethylsulfonyl)imide (N2(2O2O1)3TFSI) as well as its solutions with sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) and sodium bis(fluorosulfonyl)imide (NaFSI) are compared in order to study the effects of the anion. The NaFSI solutions show weaker interactions as suggested by lower glass transition temperatures, lower densities, lower viscosities and higher conductivities as compared to their more strongly coordinating NaTFSI analogues. The transport properties follow Vogel-Tamman-Fulcher behaviour suggesting that the mixtures are fragile glass formers. The addition of a higher concentration of Na salts results in decoupling of the translational motion from the viscosity, as observed from Walden plots, and 23Na NMR data suggests that the sodium speciation is independent of the nature of the Na salt or the temperature but is affected by the salt concentration.

13.
Chem Commun (Camb) ; 53(44): 5950-5953, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28417120

ABSTRACT

This work presents a new strategy for the promotion of CO2 uptake by an intramolecular proton transfer reaction in amino functionalized hydroxypyridine based anions.

14.
J Hazard Mater ; 324(Pt B): 241-249, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27856054

ABSTRACT

Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by 1H and 13C NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.

15.
Chemphyschem ; 17(20): 3187-3195, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27490422

ABSTRACT

The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf2 ] anion with various concentrations of Na[NTf2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf2 ] salt (over 2 mol kg-1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device.

16.
Chem Commun (Camb) ; 52(21): 4033-6, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26888053

ABSTRACT

Mg has great potential as the basis for a safe, low cost energy storage technology, however, cycling of magnesium is difficult to achieve in most electrolytes. We demonstrate cycling of Mg from a novel alkoxyammonium ionic liquid. DFT calculations highlight the role that Mg coordination with [BH4](-) ions plays in the mechanism.

17.
Phys Chem Chem Phys ; 16(35): 18658-74, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25093926

ABSTRACT

Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress the understanding of the physical and electrochemical processes in RTILs as electrolytes for the various forms of rechargeable metal-air batteries.

18.
Phys Chem Chem Phys ; 16(22): 10816-22, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24760367

ABSTRACT

The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

19.
Phys Chem Chem Phys ; 15(19): 7191-7, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23558696

ABSTRACT

Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...